화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 188-195, January, 2023
Multiple performance enhancements with one effect: Improving the electrochemical performance of SiOx coated with specific aromatic compounds
E-mail:
In this study, modification is performed with pyrolyzed fuel oil to analyze the constituent components of petroleum residue oil (PRO), and carbon coating are performed on SiOx surfaces through vapor deposition to determine the effects of the aromatic compounds from the PRO. The effects of the carbon-coating from PRO on the electrochemical performance of a lithium-ion battery are also examined. Carbon-coating layers with amorphous structures and thicknesses of 13.8 to 24.6 nm are obtained depending on the deposition temperature. After 50cycles, the coulombic efficiency of the sample is 99.8 %, the initial cycle capacity is 1095.4 mAh/g at a current density of 1.0C. The rate test results for this sample showing a capacity of 417.4 mAh/g at a current density of 2.0C. This is attributing to the formation of a thick carbon-coating layer on the sample’s surface, which maintaining the stability of the sample’s structure and suppressing volume expansion. The impedance of this sample also shows the lowest resistance at 189.2 X, indicating a better electrochemical performance compared to those of the others. Since 250 PRO contains more 2,3-cycle aromatic compounds than other samples, it is much easier to form the poly-aromatic compound when forming the carbon coating layer of SiOx, thereby improving electrical conductivity and lithium ion diffusion.
  1. Badanayak P, Vastrad JV, Silicon, 14(14), 8927 (2022)
  2. Wu H, Cui Y, Nano Today, 7, 414 (2012)
  3. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY, ACS Nano, 6, 1522 (2012)
  4. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, et al., Nano Lett., 11, 2949 (2011)
  5. An Y, Tian Y, Liu C, Xiong S, Feng J, Qian Y, ACS Nano, 16, 4560 (2022)
  6. Zhang W, Luo G, Xu Q, Zheng J, Mao S, Zhang M, et al., Electrochim. Acta, 269, 1 (2018)
  7. Hernandha RFH, Rath PC, Umesh B, Patra J, Huang CY, Wu WW, et al., Adv. Funct. Mater., 31, 2104135 (2021)
  8. An Y, Tian Y, Zhang Y, Wei C, Tan L, Zhang C, et al., ACS Nano, 14, 17574 (2020)
  9. Kim JH, Park CM, Kim H, Kim YJ, Sohn HJ, J. Electroanal. Chem., 661, 245 (2011)
  10. Xu Q, Sun JK, Yin YX, Guo YG, Adv. Funct. Mater., 28, 1705235 (2018)
  11. Chen T, Wu J, Zhang Q, Su X, J. Power Sources, 363, 126 (2017)
  12. Lu H, Wang J, Liu B, Chu G, Zhou G, Luo F, et al., Chin. Phys. B, 28 (2019)
  13. Jo MK, Sim SJ, Kim JY, Oh P, Son YK, Nanomaterials, 12, 1956 (2022)
  14. Li Y, Hou X, Wang J, Mao J, Gao Y, Hu S, J. Mater. Sci., 26, 7507 (2015)
  15. Lim KW, Lee JI, Yang J, Kim YK, Jeong HY, Park S, et al., ACS Appl. Mater. Interfaces, 6(9), 6340 (2014)
  16. Li Z, Zhao H, Wang J, Zhang T, Fu B, Zhang Z, et al., Nano Res., 13, 527 (2020)
  17. Li G, Li JY, Yue FS, Xu Q, Zuo TT, Yin YX, et al., Nano Energy, 60, 485 (2019)
  18. Liu Z, Guan D, Yu Q, Xu L, Zhuang Z, Zhu T, et al., Energy Stor. Mater., 13, 112 (2018)
  19. Ren Y, Li M, J. Power Sources, 306, 459 (2016)
  20. Lee SE, Kim JH, Lee YS, Bai BC, Im JS, Carbon Lett., 31, 911 (2021)
  21. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, et al., Carbon, 94, 432 (2015)
  22. Kim D, Kim KH, Lim C, Lee YS, Carbon Lett., 32, 1 (2022)
  23. Kim H, Lee YS, Appl. Chem. Eng., 30, 556 (2019)
  24. Hwang JU, Lee JD, HWAHAK KONGHAK, 55, 307 (2017)
  25. Seo SW, Kim JH, Lee YS, Im JS, Appl. Chem. Eng., 29, 652 (2018)
  26. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
  27. Kusenberg M, Roosen M, Zayoud A, Djokic MR, Thi HD, De Meester S, et al., Waste Manage., 141, 104 (2022)
  28. Bae SG, Oh M, Lee Y, Kim S, Jeong YG, Lee JM, et al., Ceram. Int., 48, 13295 (2022)
  29. Kim JG, Kim JH, Bai BC, Choi YJ, Im JS, Bae TS, et al., Carbon Lett., 28, 24 (2018)
  30. Srivastava M, Kumar M, Agrawal UC, Garg MO, Open Pet. Eng. J., 5, 14 (2012)
  31. Cristadoro A, Kulkarni SU, Burgess WA, Cervo EG, Räder HJ, Müllen K, et al., Carbon, 47, 2358 (2009)
  32. Jung JY, Lee YS, Carbon Lett., 15, 129 (2014)
  33. Zhu Y, Zhao X, Gao L, Cheng J, Carbon Lett., 28, 38 (2018)
  34. Silva SL, Silva AMS, Ribeiro JC, Martins FG, Da Silva FA, Silva CM, Anal. Chim. Acta, 707(1-2), 18 (2011)
  35. Mayani VJ, Mayani SV, Lee Y, Park SK, Sep. Purif. Technol., 80, 90 (2011)
  36. Cui Y, Chang J, Wang W, Materials, 9, 886 (2016)
  37. Samargandi D, Zhang X, Liu F, Tian S, J. Chem. Pharm. Res., 6, 19 (2014)
  38. Wang Z, Kong L, Guo Z, Zhang X, Wang X, Zhang X, Chem. Eng. J., 428 (2022)
  39. Ren Z, Liu S, Chen J, Yu Y, Shang Q, Fakudze S, et al., Electrochim. Acta, 402 (2022)
  40. Tougaard S, Appl. Surf. Sci., 100, 1 (1996)
  41. Tougaard S, Microsc. Microanal., 11, 676 (2005)
  42. Cruz-Barba LE, Manolache S, Denes F, Langmuir, 18, 9393 (2002)
  43. Yang HW, Lee DI, Kang N, Yoo JK, Myung ST, Kim J, et al., J. Power Sources, 400, 613 (2018)
  44. Li Z, He Q, He L, Hu P, Li W, Yan H, et al., J. Mater. Chem. A, 5, 4183 (2017)