화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 103-108, January, 2023
Convenient hydrogel adhesion with crystalline zones
E-mail:, ,
Adhering soft hydrogels to hard substrates is challenging. Existing adhesion approaches mainly rely on interfacial chemical bonds or physical interactions, which typically require complex fabrication processes or specific surface properties. Herein, we report a convenient approach to achieving effective hydrogel adhesion onto various hard substrates with in-situ formed crystalline zones by heating. Semicrystallizable poly(vinyl alcohol) hydrogels were directly cast on various subtracts by a dryingswelling process, which demonstrates strong adhesion with adhesion energy as high as 890 J/m2. The adhesion performance demonstrates an obvious positive correlation with the crystalline property. Therefore, the factors determining the crystalline degree, including the polymer type and preparation temperature, demonstrate remarkable influences on the adhesion performance. Moreover, this adhesion performance manifests high durability in harsh environments. Benefitting from the strong and durable adhesion performance, the crystalline gels can serve as a tie coating layer to joint various hydrogels, which demonstrate satisfactory antifouling ability. Therefore, this strategy may endow the materials with great potential for various practical applications in the future.
  1. Thakur MKTVK, in Hydrogels, M.K.T. Vijay Kumar Thakur Ed., Springer Singapore, Singapore (2018).
  2. Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, et al., Adv. Sci., 8, 2004213 (2021)
  3. Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM, in Smart Hydrogels, pp. 9-65, Springer, Tokyo (2014).
  4. Yuk H, Lu B, Zhao X, Chem. Soc. Rev., 48, 1642 (2019)
  5. Li P, Wang Z, Lin X, Wang X, Guo H, Sci. China Mater., 65, 226 (2022)
  6. Zhang D, Ren B, Zhang Y, Xu L, Huang Q, He Y, et al., J. Mater. Chem. B, 8, 3171 (2020)
  7. Cui W, Zheng Y, Zhu R, Mu Q, Wang X, Wang Z, Liu S, Li M, Ran R, Adv. Funct. Mater., 2204823 (2022)
  8. Hao XP, Zhang CW, Zhang XN, Hou LX, Hu J, Dickey MD, et al., Small, 18, 2201643 (2022)
  9. Shi Q, Liu H, Tang D, Li Y, Li X, Xu F, NPG Asia Mater., 11, 64 (2019)
  10. Guo H, Chen J, Wang Z, Guo H, Hong W, Wang X, Chinese Chem. Lett., 33, 2178 (2022)
  11. Cui K, Yu C, Ye YN, Li X, Gong JP, Proc. Natl. Acad. Sci. U.S.A., 119 (2022)
  12. Zhang F, Ju P, Pan M, Zhang D, Huang Y, Li G, et al., Corrosion Sci., 144, 74 (2018)
  13. Lee BP, Messersmith PB, Israelachvili JN, Waite JH, Annu. Rev. Mater. Res., 41, 99 (2011)
  14. Cui H, Chen F, Liao Y, Liang Z, Luo L, Wang X, et al., Compos. Commun., 33 (2022)
  15. Wu K, Han H, Xu L, Gao Y, Yang Z, Jiang Z, et al., Constr. Build. Mater., 291 (2021)
  16. Zieger MM, Müller P, Blasco E, Petit C, Hahn V, Michalek L, et al., Adv. Funct. Mater., 28 (2018)
  17. Gräfe D, Walden SL, Blinco J, Wegener M, Blasco E, Barner-Kowollik C, Angew. Chem.-Int. Edit., 59, 2 (2020)
  18. Yang J, Bai R, Chen B, Suo Z, Adv. Funct. Mater., 30, 1901693 (2020)
  19. Chen B, Yang J, Bai R, Suo Z, Adv. Healt. Mater., 8, 1900810 (2019)
  20. Yuk H, Zhang T, Lin S, Parada GA, Zhao X, Nat. Mater., 15, 190 (2016)
  21. Pan F, Ye S, Wang R, She W, Liu J, Sun Z, et al., Mater. Horiz., 7, 2063 (2020)
  22. Takahashi R, Shimano K, Okazaki H, Kurokawa T, Nakajima T, Nonoyama T, et al., Adv. Mater. Interfaces, 5, 1801018 (2018)
  23. Yuk H, Varela CE, Nabzdyk CS, Mao X, Padera RF, Roche ET, et al., Nature, 575, 169 (2019)
  24. Pan S, Zhang F, Cai P, Wang M, He K, Luo Y, et al., Adv. Funct. Mater., 30, 1909540 (2020)
  25. Steck J, Kim J, Yang J, Hassan S, Suo Z, Extreme Mech. Lett., 39 (2020)
  26. Miao Y, Xu M, Zhang L, Adv. Mater., 33, 2102308 (2021)
  27. Lin X, Wang X, Zeng L, Wu ZL, Guo H, Hourdet D, Chem. Mater., 33, 7633 (2021)
  28. Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L, Nature, 505, 382 (2014)
  29. Dompé M, Cedano-Serrano FJ, Vahdati M, van Westerveld L, Hourdet D, Creton C, et al., Adv. Mater. Interfaces, 7, 1901785 (2020)
  30. Huang G, Tang Z, Peng S, Zhang P, Sun T, Wei W, et al., Macromolecules, 55, 156 (2022)
  31. Han L, Wang M, Prieto-López LO, Deng X, Cui J, Adv. Funct. Mater., 30, 1907064 (2020)
  32. Nakahata M, Takashima Y, Yamaguchi H, Harada A, Nat. Commun., 2, 511 (2011)
  33. Maier GP, Rapp MV, Waite JH, Israelachvili JN, Butler A, Science, 349, 628 (2015)
  34. Rao P, Sun TL, Chen L, Takahashi R, Shinohara G, Guo H, et al., Adv. Mater., 30, 1801884 (2018)
  35. Yu Z, Wu P, Mater. Horiz., 8, 2057 (2021)
  36. Fan H, Wang J, Tao Z, Huang J, Rao P, Kurokawa T, et al., Nat. Commun., 10, 5127 (2019)
  37. Fan H, Wang J, Gong JP, Adv. Funct. Mater., 31, 2009334 (2020)
  38. Liu J, Lin S, Liu X, Qin Z, Yang Y, Zang J, et al., Nat. Commun., 11, 1071 (2020)
  39. Xi S, Tian F, Wei G, He X, Shang Y, Ju Y, et al., Adv. Mater., 33, 2103174 (2021)
  40. Otsuka E, Suzuki A, J. Appl. Polym. Sci., 114, 10 (2009)
  41. Guo H, Sanson N, Hourdet D, Marcellan A, Adv. Mater., 28, 5857 (2016)
  42. Guo H, Sanson N, Marcellan A, Hourdet D, Macromolecules, 49, 9568 (2016)
  43. Hirotsu T, in Section 3 - Theory of swelling, Osada Y, Kajiwara K, Fushimi T, Irasa O, Hirokawa Y, Matsunaga T, Shimomura T, Wang L, Ishida H, Eds., pp. 65-97, Academic Press, Burlington (2001).
  44. Guo H, Mussault C, Marcellan A, Hourdet D, Sanson N, Macromol. Rapid Commun., 38, 1700287 (2017)
  45. Zhang D, Yang F, He J, Xu L, Wang T, Feng ZQ, et al., Polym. Mater., 2, 1031 (2020)
  46. Guo H, Mussault C, Brûlet A, Marcellan A, Hourdet D, Sanson N, Macromolecules, 49, 4295 (2016)
  47. Zhai Y, Meng X, Duan H, Ding Z, Liu Y, Lucia L, Macromol. Chem. Phys., 217, 32 (2016)
  48. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS, J. Am. Chem. Soc., 127, 14505 (2005)
  49. Guo H, de Magalhaes Goncalves M, Ducouret G, Hourdet D, Biomacromolecules, 19, 576 (2018)
  50. Banerjee SL, Bhattacharya K, Samanta S, Singha NK, ACS Appl. Mater. Interfaces, 10, 27391 (2018)
  51. Li P, Zeng LG, Hong-lei H, Guo WH, Acta Polym. Sin., 51, 1307 (2020)