Korean Journal of Materials Research, Vol.32, No.11, 481-488, November, 2022
CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석
Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method
E-mail:
The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.
- Odeh AA, Douri YA, Ayub RM, Ibraheam AS, J. Alloy. Compd., 686, 883 (2016)
- Nakamura M, Yamaguchi K, Kimoto Y, Tasaki Y, Kato T, Sugimoto H, IEEE J. Photovoltaics, 9, 1863 (2019)
- Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X, Prog. Photovoltaics, 30, 687 (2022)
- Lv X, Zhu C, Wang Y, Wang L, Shi J, J. Alloy. Compd., 874, 159898 (2021)
- Xu B, Qin X, Lin J, Chen J, Tong H, Qi R, Yue F, Chen Y, Yang P, Chu J, Sun L, Sol. RRL, 6, 2200256 (2022)
- Romanyuk YE, Haass SG, Giraldo S, Placidi M, Tiwari D, Fermin DJ, Hao X, Schnabel T, Kauk-Kuusik M, J. Phys. Energy, 1, 044004 (2019)
- Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E, Adv. Mater., 31, 1806692 (2019)
- Sun R, Zhuang D, Zhao M, Gong Q, Scarpulla M, Wei Y, Ren G, Wy Y, Sol. Energy Mater. Sol. Cells, 174, 494 (2018)
- Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil BP, Sun K, Pu A, Stride JA, Green MA, Hao X, ACS Energy Lett., 2, 930 (2017)
- Contreras MA, Romero MJ, To B, Hasoon F, Noufi R, Ward S, Ramanathan K, Thin Solid Films, 403-404, 204 (2002)
- Sun L, Shen H, Huang H, Raza A, Zhao Q, Hu D, Mater. Sci. Semicond. Process, 120, 105356 (2020)
- Fu J, Tian Q, Zhou Z, Kou D, Meng Y, Zhou W, Wu S, Chem. Mater., 28, 5821 (2016)
- Shim H, Kim J, Gang MG, Kim JH, Korean J. Mater. Res., 28, 564 (2018)
- Jang S, Jang JS, Jo E, Karade VC, Kim J, Moon JH, Kim JH, Korean J. Mater. Res., 31, 150 (2021)
- Yan Q, Cheng S, Yu X, Jia H, Fu J, Zhang C, Zheng Q, Wu S, Sol. RRL, 4, 1900410 (2020)
- Sharif MH, Enkhbat T, Enkhbayar E, Kim JH, ACS Appl. Energy Mater., 3, 8500 (2020)
- Nam D, Cho S, Sim JH, Yang KJ, Son DH, Kim DH, Kang JK, Kwon MS, Jeon CW, Cheong H, Sol. Energy Mater. Sol. Cells, 149, 226 (2016)
- Su Z, Tan JMR, Li X, Zeng X, Batabyal SK, Wong LH, Adv. Energy Mater., 5, 1500682 (2015)
- Laun H, Yao B, Li Y, Liu R, Ding Z, Zhang Z, Zhao H, Zhang L, J. Alloy. Compd., 879, 160160 (2021)
- Xiao ZY, Li YF, Yao B, J. Appl. Phys., 114, 183506 (2013)