화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.32, No.11, 481-488, November, 2022
CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석
Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method
E-mail:
The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.
  1. Odeh AA, Douri YA, Ayub RM, Ibraheam AS, J. Alloy. Compd., 686, 883 (2016)
  2. Nakamura M, Yamaguchi K, Kimoto Y, Tasaki Y, Kato T, Sugimoto H, IEEE J. Photovoltaics, 9, 1863 (2019)
  3. Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X, Prog. Photovoltaics, 30, 687 (2022)
  4. Lv X, Zhu C, Wang Y, Wang L, Shi J, J. Alloy. Compd., 874, 159898 (2021)
  5. Xu B, Qin X, Lin J, Chen J, Tong H, Qi R, Yue F, Chen Y, Yang P, Chu J, Sun L, Sol. RRL, 6, 2200256 (2022)
  6. Romanyuk YE, Haass SG, Giraldo S, Placidi M, Tiwari D, Fermin DJ, Hao X, Schnabel T, Kauk-Kuusik M, J. Phys. Energy, 1, 044004 (2019)
  7. Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E, Adv. Mater., 31, 1806692 (2019)
  8. Sun R, Zhuang D, Zhao M, Gong Q, Scarpulla M, Wei Y, Ren G, Wy Y, Sol. Energy Mater. Sol. Cells, 174, 494 (2018)
  9. Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil BP, Sun K, Pu A, Stride JA, Green MA, Hao X, ACS Energy Lett., 2, 930 (2017)
  10. Contreras MA, Romero MJ, To B, Hasoon F, Noufi R, Ward S, Ramanathan K, Thin Solid Films, 403-404, 204 (2002)
  11. Sun L, Shen H, Huang H, Raza A, Zhao Q, Hu D, Mater. Sci. Semicond. Process, 120, 105356 (2020)
  12. Fu J, Tian Q, Zhou Z, Kou D, Meng Y, Zhou W, Wu S, Chem. Mater., 28, 5821 (2016)
  13. Shim H, Kim J, Gang MG, Kim JH, Korean J. Mater. Res., 28, 564 (2018)
  14. Jang S, Jang JS, Jo E, Karade VC, Kim J, Moon JH, Kim JH, Korean J. Mater. Res., 31, 150 (2021)
  15. Yan Q, Cheng S, Yu X, Jia H, Fu J, Zhang C, Zheng Q, Wu S, Sol. RRL, 4, 1900410 (2020)
  16. Sharif MH, Enkhbat T, Enkhbayar E, Kim JH, ACS Appl. Energy Mater., 3, 8500 (2020)
  17. Nam D, Cho S, Sim JH, Yang KJ, Son DH, Kim DH, Kang JK, Kwon MS, Jeon CW, Cheong H, Sol. Energy Mater. Sol. Cells, 149, 226 (2016)
  18. Su Z, Tan JMR, Li X, Zeng X, Batabyal SK, Wong LH, Adv. Energy Mater., 5, 1500682 (2015)
  19. Laun H, Yao B, Li Y, Liu R, Ding Z, Zhang Z, Zhao H, Zhang L, J. Alloy. Compd., 879, 160160 (2021)
  20. Xiao ZY, Li YF, Yao B, J. Appl. Phys., 114, 183506 (2013)