화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.11, 783-790, November, 2022
Preparation and Photoelectrocatalytic Performance Study of Au-RGO/TiO2 NTs Photoelectrode
E-mail:
In our research, The Au-reduced graphene oxide (RGO)/TiO2 nanotubes (NTs) photoelectrode was prepared by electrodeposition, and was characterized and analyzed by scanning electron microscope, X-ray energy scattering spectroscopy, X-ray diffraction, photoluminescence spectroscopy, and photoelectrochemical methods. The results show that the best preparation conditions is setting deposition voltage as 0.2 V and deposition time as 30 s. At the same time, the nano-gold is well supported on RGO/TiO2 NTs without changing the original nanotube array structure. After a 35 W mercury lamp and a 15 V bias are applied, the photoelectric degradation efficiency of methylene blue is 72%, slightly higher thanthose of the other two electrodes. which show demonstrate that the photocatalytic activity of Au-RGO/TiO2 NTs photoelectrodes under visible light is improved effectively.
  1. Jiati L, Wei Y, Agric. Technol., 39, 24 (2019)
  2. Marin RP, Ishikawa S, Bahruji H, Shaw G, Kondrat SA, Miedziak PJ, Morgan DJ, Taylor SH, Bartley JK, Edwards JK, Bowker M, Ueda W, Hutchings GJ, Appl. Catal. A: Gen., 504, 62 (2015)
  3. Kaplan R, Erjavec B, Dražić G, Grdadolnik J, Pintar A, Appl. Catal. B: Environ., 181, 465 (2016)
  4. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
  5. Li XZ, Liu HL, Yue PT, Sun YP, Environ. Sci. Technol., 34, 4401 (2000)
  6. Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK, Chem. Phys. Lett., 365, 427 (2002)
  7. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
  8. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA, J. Phys. Chem. C, 111, 7235 (2007)
  9. Su Y, Wu J, Quan X, Chen S, Desalination, 252, 143 (2010)
  10. Conforto E, Caillard D, Müller L, Müller FA, Acta Biomater., 4, 1934 (2008)
  11. Yun H, Lin C, Li J, Wang J, Chen H, Appl. Surf. Sci., 255, 2113 (2008)
  12. Wang W, Lin H, Li J, Wang N, J. Am. Ceram. Soc., 91, 628 (2008)
  13. Chakraborty I, Chatterjee S, Ayyub P, Appl. Phys. Lett., 99, 143106 (2011)
  14. Mor GK, Shankar K, Varghese OK, Grimes CA, J. Mater. Res., 19, 2989 (2004)
  15. Kanjwal MA, Barakat NAM, Sheikh FA, Park SJ, Kim HY, Macromol. Res., 18, 233 (2010)
  16. Che J, Bae N, Noh J, Kim T, Yoo PJ, Shin TJ, Park J, Macromol. Res., 27, 427 (2019)
  17. Liu S, Fu W, Yang H, Li M, Sun P, Luo B, Yu Q, Wei R, Yuan M, Zhang Y, Ma D, Li Y, Zou G, J. Phys. Chem. C, 112, 19852 (2008)
  18. Liu Z, Zhang X, Nishimoto S, Murakami T, Fujishima A, Environ. Sci. Technol., 42, 8547 (2008)
  19. Wu F, Li X, Liu W, Zhang S, Appl. Surf. Sci., 405, 60 (2017)
  20. Tan C, Liu H, Li J, Xia Z, Zuo J, J. Environ. Eng.-ASCE, 146 (2020)
  21. Jinlong Z, Yiwen L, Junsheng L, Zhi X, Chong T, Liming J, Yuqi S, Shulei T, Res. Environ. Sci., 33, 677 (2020)
  22. Zanella R, Rodríguez-González V, Arzola Y, Moreno-Rodriguez A, ACS Catal., 2, 1 (2012)
  23. Tian B, Zhang J, Tong T, Chen F, Appl. Catal. B: Environ., 79, 394 (2008)
  24. Oros-Ruiz S, Gómez R, López R, Hernández-Gordillo A, Pedraza-Avella JA, Moctezuma E, Pérez E, Catal. Commun., 21, 72 (2012)
  25. Fu P, Zhang P, Thin Solid Films, 519, 3480 (2011)
  26. Laskova B, Zukalova M, Zukal A, Bousa M, Kavan L, J. Power Sources, 246, 103 (2014)
  27. Li J, Wan W, Zhou H, Li J, Xu D, Chem. Commun., 47, 3439 (2011)
  28. Dylla AG, Henkelman G, Stevenson KJ, Acc. Chem. Res., 46, 1104 (2013)
  29. Morgan BJ, Madden PA, Phys. Rev. B, 86, 035147 (2012)
  30. Ismail AA, Bahnemann DW, Al-Sayari SA, Appl. Catal. A: Gen., 431-432, 62 (2012)
  31. Hawker D, J. Chem. Educ., 92, 1531 (2015)
  32. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P, Nano Lett., 13, 14 (2013)