화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.6, 849-854, November, 2022
골 유도 재생을 위한 어골 함유 젤라틴-키토산 차폐막
Gelatin-Chitosan Membrane Containing Fish Bones for Guided Bone Regeneration
E-mail:
초록
어골은 골 대사와 연관된 유용한 성분을 포함하고 있어서 골 재생을 위한 재료로 활용이 기대된다. 본 연구에 서는 어골을 함유한 젤라틴-키토산 차폐막을 제조하고 골 유도 재생에 있어서 골세포의 증식과 분화에 미치는 영향을 평가하였다. 어골의 함량이 증가함에 따라 젤라틴-키토산 차폐막에서 MC3T3-E1 세포의 증식은 증가하는 경향을 보였다. MC3T3-E1 세포의 alkaline phosphatase(ALP) 활성은 젤라틴-키토산 차폐막에서 어골의 함량이 증가함에 따라 유의하게 증가하였다. Alizarin-red S 염색 시험에서 어골의 함량이 증가함에 따라 젤라틴-키토산 차폐막은 MC3T3-E1 세포의 성숙을 유의하게 유도하는 것으로 나타났다. 따라서, 어골을 함유한 젤라틴-키토산 차폐막은 골 세포의 증식과 성숙을 유도할 수 있고 골 유도 재생에 유용하게 사용될 수 있다.
Calcium phosphate obtained from fish bones is expected to be used as a material for bone regeneration. In this study, fish bones-included gelatin-chitosan membrane (FB@GEL-CS membrane) was prepared and investigated for guided bone regeneration (GBR). Cell proliferation of osteoblast MC3T3-E1 on FB@GEL-CS membrane according to the content of fish bones was evaluated. MC3T3-E1 cells grew much better on FB@CS-GEL membrane as the content of fish bones increase. In addition, MC3T3-E1 cells on FB@GEL-CS membrane significantly increased alkaline phosphatase (ALP) activity according to the content of fish bones. Analyses of alizarin-red S staining showed that MC3T3-E1 cells on FB@GEL-CS membrane caused increases in cell maturation as the content of fish bones increase. Taken together, results of this study demonstrate that FB@GEL-CS membrane can induce MC3T3-E1 cell proliferation and maturation.
  1. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T, Biomed. Res. Int., 2016, 6285620 (2016)
  2. Kim JC, Lee M, Yeo IS, Mater. Horiz., 9, 1387 (2022)
  3. Altundal H, Güvener O, Int. J. Oral Maxillofac. Surg., 33, 286 (2004)
  4. Alauddin MS, Abdul Hayei NA, Sabarudin MA, Baharin NH, Membranes, 12, 444 (2022)
  5. Kim SY, Lee YJ, Cho WT, Hwang SH, Heo SC, Kim HJ, Hub JB, Materials, 14, 4464 (2021)
  6. Moghadam ET, Yazdanian M, Alam M, Tebyanian H, Tafazoli A, Tahmasebi E, Ranjbar R, Yazdanian A, Seifalian A, J. Mater. Res. Technol., 13, 2078 (2021)
  7. Yuan Y, Chesnutt BM, Haggard WO, Bumagardner JD, Mater. (Basel), 4, 1399 (2011)
  8. Ueno H, Mori T, Fujinaga T, Adv. Drug Deliv. Rev., 52, 105 (2001)
  9. Kim AY, Kim Y, Lee SH, Yoon Y, Kim WH, Kweon OK, Cell Transplant., 26, 115 (2017)
  10. Santo RD, Romanò S, Mazzini A, Jovanović S, Nocca G, Campi G, Papi M, Spirito MD, Giacinto FD, Ciasca G, Nanomaterials, 11, 1476 (2021)
  11. Georgopoulou A, Papdogiannis F, Batsali A, Marakis J, Alpantaki K, Eliopoulos AG, Pontikoglou C, Chatzinikolaidou M, J. Mater. Sci. -Mater. Med., 29, 59 (2018)
  12. Chang HH, Yeh CL, Wang YL, Fu KK, Tsai SJ, Yang JH, Lin CP, Mater., 13, 823 (2020)
  13. Akram M, Ahemd R, Shakir I, Ibrahim WAW, Hussain R, J. Mater. Sci., 49, 1461 (2014)
  14. Terzioğlu P, Öğüt H, Kalemtas A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 91, 899 (2018)
  15. Kim SC, Heo SY, Oh GW, Yi M, Jung WK, Mar. Drug., 20, 344 (2022)
  16. Zhang H, Bhagwagar DE, Graf JF, Painter PC, Coleman MM, Polymer, 35, 5379 (1994)
  17. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY, Biomater. Res., 23, 4 (2019)
  18. Dan Y, Liu O, Zhang YY, Li S, Feng X, Shao Z, Yang C, Yang SH, Hong J, Nanoscale Res. Lett., 11, 487 (2016)
  19. Kodali D, Hembrick-Holloman V, Gunturu DR, Samuel T, Jeelani S, Rangari VK, ACS Omega, 7, 8323 (2022)
  20. Samavedi S, Whittington AR, Goldstein AS, Acta Biomater., 9, 8037 (2013)
  21. Sim BR, Kim HM, Kim SM, Kim DK, Song JE, Park CH, Khang G, Polym. Korea, 40, 915 (2016)
  22. Hermann J, Gummi MR, Xia M, van der Giet M, Tölle M, Schuchardt M, Biology, 10, 459 (2021)