Polymer(Korea), Vol.46, No.6, 837-842, November, 2022
전기방사법으로 제조한 PCL/젤라틴/셀룰로오스 지지체의 기계적 특성 및 생체적합성
Mechanical Properties and Biocompatibility of Electrospun Poly(-caprolactone)/Gelatin Scaffolds Loaded with Cellulose Fiber
E-mail:
초록
18 wt% PCL/젤라틴(P/g)에 셀룰로오스 섬유(CF)를 첨가하여 P/g/CF 지지체를 전기방사하고, CF 농도에 따른 인장강도, 투습도, 수분흡수도, 세포독성 및 증식 특성을 조사하였다. CF 농도가 0에서 4 wt%로 증가함에 따라, 점도는 811에서 1121 cP로 증가하였고 섬유 직경은 462에서 869 nm로 증가하였다. 2 wt% CF가 첨가된 P/g/CF에서 4.8±0.8 MPa 최대 인장강도값이 관찰되었지만, CF 농도가 증가함에 따라 강도값은 감소하였다. FTIR 결과, CF농도가 증가함에 따라 지지체 내부의 CF와 젤라틴 간의 수소결합에 의하여 PCL 결정도가 감소하였다. 최적의 투습도와 물 흡수도는 CF농도가 각각 1%와 2%일 때 관찰되었다. 세포생존률과 세포 증식은 CF농도에 상관없이 P/g/CF지지체 에서 유사하였다. 실험결과, 상처드레싱재로 적합한 최적의 특성을 가진 지지체는 CF농도가 2 wt%인 P/g/CF에서 관찰되었다.
The cellulose fiber (CF)-loaded PCL/gelatin (P/g) scaffolds were electrospun to investigate the effect of CF content on the strength, moisture vapor transmission rate (MVTR), water uptake capacity (WUC), and cytotoxicity of the P/g/CF scaffolds. The fiber diameter gradually increased from 462 to 869 nm with increasing the CF content from 0 to 4 wt% due to the increase in viscosity from 811 to 1121 cP. The strength increased from 2.2±0.3 to 4.8±0.8 MPa as the CF content increased from 0 to 2 wt%, and decreased with additional CF doping. FTIR results revealed that PCL crystallinity decreased with increasing CF content due to H bonds between cellulose and gelatin. The highest MVTR (CF=1 wt%) and WUC (CF=2 wt%) values are observed. Excellent cell viability and proliferation were observed in P/g/CF scaffolds regardless of CF content. It can be concluded that P/g scaffolds loaded with 2% CF are highly suitable as wound dressings.
- Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M, Ramakrishna S, Biomaterials, 29, 4532 (2008)
- Gautam S, Dinda AK, Mishra NC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 1228 (2013)
- Binulai NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV, J. Biomater. Sci.-Polym. Ed., 25, 325 (2014)
- Song Y, Kim B, Yang DH, Lee DY, Poly(ε-caprolactone)/gelatin Scaffolds for Wound Dressing., Appl. Nanosci., 2022.
- Goudarzi ZM, Behzad T, Ghasemi-Mobarakeh L, Kharaziha M, Enayati MS, Polym. Bull., 77, 717 (2020)
- Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G, Vaez A, Hashemi SF, Rezaei N, Mousavi SR, Biomed. Eng. Lett., 10, 149 (2020)
- Oh G, Rho J, Lee DY, Lee M, Kim Y, Macromol. Res., 26, 48 (2018)
- Seol B, Shin J, Oh G, Lee DY, Lee M, J. Biomed. Eng. Res., 38, 248 (2017)
- Ke R, Yi W, Tao S, Wen Y, Hongyu Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 78, 324 (2017)
- Shin J, Lee DY, Kim B, Yoon JI, J. Appl. Polym. Sci., 137, 49568 (2020)
- Shin J, Lee DY, Yoon JI, Macromol. Res., 28, 813 (2020)
- Shin J, Jeong H, Lee DY, J. Biomed. Eng. Res., 39, 161 (2018)
- Son S, Choi JE, Cho H, Kang DJ, Lee DY, Kim JT, Jang JW, Polym. Korea, 39, 323 (2015)
- Kim S, Lim H, Kim S, Lee DY, J. Biomed. Eng. Res., 41, 1 (2020)
- Kuppan P, Sethuraman S, Krishnan UM, J. Biomed. Nanotechnol., 9, 1540 (2013)
- Chellamani KP, Sundaramoorthy P, Suresham T, J. Acad. Indus. Res., 1, 342 (2012)
- Lee SM, Park IK, Kim YS, Kim HJ, Moon H, Mueller S, Jeong Y, Biomater. Res., 20, 15 (2016)
- Jeong H, Rho J, Shin J, Lee DY, Hwang T, Kim KJ, Biomed. Eng. Lett., 8, 267 (2018)
- Kim D, Lee M, Lee DY, Han J, J. Biomed. Mater. Res., 53, 438 (2000)
- Longhao J, Park K, Yoon Y, Kim HS, Kim HY, Choi JW, Lee DY, Chun HJ, Yang DH, Mater., 14, 2270 (2021)