화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.6, 837-842, November, 2022
전기방사법으로 제조한 PCL/젤라틴/셀룰로오스 지지체의 기계적 특성 및 생체적합성
Mechanical Properties and Biocompatibility of Electrospun Poly(-caprolactone)/Gelatin Scaffolds Loaded with Cellulose Fiber
E-mail:
초록
18 wt% PCL/젤라틴(P/g)에 셀룰로오스 섬유(CF)를 첨가하여 P/g/CF 지지체를 전기방사하고, CF 농도에 따른 인장강도, 투습도, 수분흡수도, 세포독성 및 증식 특성을 조사하였다. CF 농도가 0에서 4 wt%로 증가함에 따라, 점도는 811에서 1121 cP로 증가하였고 섬유 직경은 462에서 869 nm로 증가하였다. 2 wt% CF가 첨가된 P/g/CF에서 4.8±0.8 MPa 최대 인장강도값이 관찰되었지만, CF 농도가 증가함에 따라 강도값은 감소하였다. FTIR 결과, CF농도가 증가함에 따라 지지체 내부의 CF와 젤라틴 간의 수소결합에 의하여 PCL 결정도가 감소하였다. 최적의 투습도와 물 흡수도는 CF농도가 각각 1%와 2%일 때 관찰되었다. 세포생존률과 세포 증식은 CF농도에 상관없이 P/g/CF지지체 에서 유사하였다. 실험결과, 상처드레싱재로 적합한 최적의 특성을 가진 지지체는 CF농도가 2 wt%인 P/g/CF에서 관찰되었다.
The cellulose fiber (CF)-loaded PCL/gelatin (P/g) scaffolds were electrospun to investigate the effect of CF content on the strength, moisture vapor transmission rate (MVTR), water uptake capacity (WUC), and cytotoxicity of the P/g/CF scaffolds. The fiber diameter gradually increased from 462 to 869 nm with increasing the CF content from 0 to 4 wt% due to the increase in viscosity from 811 to 1121 cP. The strength increased from 2.2±0.3 to 4.8±0.8 MPa as the CF content increased from 0 to 2 wt%, and decreased with additional CF doping. FTIR results revealed that PCL crystallinity decreased with increasing CF content due to H bonds between cellulose and gelatin. The highest MVTR (CF=1 wt%) and WUC (CF=2 wt%) values are observed. Excellent cell viability and proliferation were observed in P/g/CF scaffolds regardless of CF content. It can be concluded that P/g scaffolds loaded with 2% CF are highly suitable as wound dressings.
  1. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M, Ramakrishna S, Biomaterials, 29, 4532 (2008)
  2. Gautam S, Dinda AK, Mishra NC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 1228 (2013)
  3. Binulai NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV, J. Biomater. Sci.-Polym. Ed., 25, 325 (2014)
  4. Song Y, Kim B, Yang DH, Lee DY, Poly(ε-caprolactone)/gelatin Scaffolds for Wound Dressing., Appl. Nanosci., 2022.
  5. Goudarzi ZM, Behzad T, Ghasemi-Mobarakeh L, Kharaziha M, Enayati MS, Polym. Bull., 77, 717 (2020)
  6. Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G, Vaez A, Hashemi SF, Rezaei N, Mousavi SR, Biomed. Eng. Lett., 10, 149 (2020)
  7. Oh G, Rho J, Lee DY, Lee M, Kim Y, Macromol. Res., 26, 48 (2018)
  8. Seol B, Shin J, Oh G, Lee DY, Lee M, J. Biomed. Eng. Res., 38, 248 (2017)
  9. Ke R, Yi W, Tao S, Wen Y, Hongyu Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 78, 324 (2017)
  10. Shin J, Lee DY, Kim B, Yoon JI, J. Appl. Polym. Sci., 137, 49568 (2020)
  11. Shin J, Lee DY, Yoon JI, Macromol. Res., 28, 813 (2020)
  12. Shin J, Jeong H, Lee DY, J. Biomed. Eng. Res., 39, 161 (2018)
  13. Son S, Choi JE, Cho H, Kang DJ, Lee DY, Kim JT, Jang JW, Polym. Korea, 39, 323 (2015)
  14. Kim S, Lim H, Kim S, Lee DY, J. Biomed. Eng. Res., 41, 1 (2020)
  15. Kuppan P, Sethuraman S, Krishnan UM, J. Biomed. Nanotechnol., 9, 1540 (2013)
  16. Chellamani KP, Sundaramoorthy P, Suresham T, J. Acad. Indus. Res., 1, 342 (2012)
  17. Lee SM, Park IK, Kim YS, Kim HJ, Moon H, Mueller S, Jeong Y, Biomater. Res., 20, 15 (2016)
  18. Jeong H, Rho J, Shin J, Lee DY, Hwang T, Kim KJ, Biomed. Eng. Lett., 8, 267 (2018)
  19. Kim D, Lee M, Lee DY, Han J, J. Biomed. Mater. Res., 53, 438 (2000)
  20. Longhao J, Park K, Yoon Y, Kim HS, Kim HY, Choi JW, Lee DY, Chun HJ, Yang DH, Mater., 14, 2270 (2021)