Journal of Industrial and Engineering Chemistry, Vol.116, 428-437, December, 2022
Rational design of Cu-doped Co3O4@carbon nanocomposite and agriculture crop-waste derived activated carbon for high-performance hybrid supercapacitors
E-mail:, ,
Development of structurally stable transition metal-oxides and cost-effective biomass-based carbon materials have attracted considerable attention in the fabrication of hybrid supercapacitors. In this work, we designed spinal copper-doped cobalt oxide (Cu-Co3O4 ) nanoboxes decorated functionalized-carbon nanotubes (f-CNTs) as hybrid redox-type material and agriculture crop-waste derived mesoporous activated carbon as capacitive-type electrode for high-performance hybrid supercapacitors. Structural properties reveal that the Cu-Co3O4 has a cubic spinel structure and Raman spectra results confirm the presence of f-CNTs. The hybrid composite material demonstrates superior redox behavior with excellent structural durability. The hybrid electrodes exhibit maximum specific capacity of 130.7 mAh g-1 at 0.5 A g-1 with 86.7 % capacitance retention over 10,000 cycles. Besides, the crop waste-derived activated carbon demonstrates high surface area (1549 m2g-1), mesoporous characteristics and excellent capacitive behavior. The high voltage hybrid supercapacitor is further fabricated with Cu-Co3O4 @F-CNTs as battery-type and biomass-derived activated carbon as capacitive-type electrodes, which demonstrate high energy density of 30.8 Wh kg-1 at 5972 W kg -1 power density. The augmented results indicate that the hybrid composites with biomass-derived carbon materials pave the way for design of eco-friendly energy storage applications.
- Aadil M, Zulfiqar S, Warsi MF, Agboola PO, Shakir I, J. Mater. Res. Technol., 9, 12697 (2020)
- Ahmad F, Khalid M, Panigrahi BK, J. Storage Mater., 43, 103153 (2021)
- Baek SH, Si HR, Appl. Clay Sci., 217, 106408 (2022)
- Bo X, Xiang K, Zhang Y, Shen Y, Chen S, Wang Y, et al., J. Energy Chem., 39, 1 (2019)
- Chen C, Liu X, Fang Q, Chen X, Liu T, Zhang M, Vacuum, 174, 109198 (2020)
- Chen H, Wang J, Liao F, Han X, Zhang Y, Xu C, et al., Ceram. Int., 45, 11876 (2019)
- Chen H, Wang Y, Xu C, Mater. Lett., 163, 72 (2016)
- Chen S, Gao P, Zhang D, Lin L, Huang L, Li Z, et al., J. Alloy. Compd., 860, 158346 (2021)
- Gund GS, Dubal DP, Shinde SS, Lokhande CD, ACS Appl. Mater. Interfaces, 6, 3176 (2014)
- Hao J, Peng S, Li H, Dang S, Qin T, Wen Y, et al., J. Mater. Chem. A, 6, 16094 (2018)
- Hashem AM, Abuzeid HM, Narayanan N, Ehrenberg H, Julien CM, Mater. Chem. Phys., 130, 33 (2011)
- Jorio A, Saito R, J. Appl. Phys., 129(2) (2021)
- Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX, J. Power Sources, 270, 426 (2014)
- Li D, Meng F, Yan X, Yang L, Heng H, Zhu Y, Nanoscale Res. Lett., 8, 535 (2013)
- Li S, Yang K, Ye P, Ma K, Zhang Z, Huang Q, Appl. Surf. Sci., 503, 144090 (2020)
- Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao YC, et al., Appl. Surf. Sci., 436, 934 (2018)
- Lu Y, Qiu K, Zhang D, Lin J, Xu J, Liu X, et al., RSC Adv., 4, 46814 (2014)
- Nagaraju G, Sekhar SC, Bharat LK, Yu JS, ACS Nano, 11, 10860 (2017)
- Nagaraju G, Sekhar SC, Ramulu B, Bharat LK, Raju GSR, Han YK, et al., Nano Energy, 50, 448 (2018)
- Nagaraju G, Sekhar SC, Ramulu B, Hussain SK, Narsimulu D, Yu JS, Nano- Micro Lett., 13(1) (2021)
- Pallavolu MR, Nallapureddy RR, Goli HR, Banerjee AN, Reddy GR, Joo SW, J. Mater. Chem. A, 9, 25208 (2021)
- Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, El-Kady MF, Kaner RB, et al., Chem. Mater., 27, 3919 (2015)
- Pendashteh A, Rahmanifar MS, Kaner RB, Mousavi MF, Chem. Commun., 50, 1972 (2014)
- Qorbani M, Chou T, Lee YH, Samireddi S, Naseri N, Ganguly A, et al., J. Mater. Chem. A, 5, 12569 (2017)
- Raj S, Srivastava SK, Kar P, Roy P, Electrochim. Acta, 302, 327 (2019)
- Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR, RSC Adv., 2, 9619 (2012)
- Senthilkumar ST, Fu N, Liu Y, Wang Y, Zhou L, Huang H, Electrochim. Acta, 211, 411 (2016)
- Simon P, Gogotsi Y, Materials for electrochemical capacitors, in: Nanoscience and Technology. Co-Published with Macmillan Publishers Ltd, UK, pp. 320–329, 2009.
- Subramani K, Kowsik S, Sathish M, ChemistrySelect, 1, 3455 (2016)
- Suyana P, Ganguly P, Nair BN, Mohamed AP, Warrier KGK, Hareesh US, Environ. Sci.-Nano, 4, 212 (2017)
- Tao T, Zhang L, Jiang H, Li C, New J. Chem., 37, 1294 (2013)
- Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, et al., Nano Res., 5, 605 (2012)
- Wang Q, Xu J, Wang X, Liu B, Hou X, Yu G, et al., ChemElectroChem, 1, 559 (2014)
- Wang S, Wang T, Shi Y, Liu G, Li J, RSC Adv., 6, 18465 (2016)
- Wang W, Qu Z, Song L, Fu Q, J. Energy Chem., 40, 22 (2020)
- Wang W, Xu L, Zhang R, Xu J, Xian F, Su J, et al., Chem. Phys. Lett., 721, 57 (2019)
- Wang X, Song H, Ma S, Li M, He G, Xie M, et al., Chem. Eng. J., 432, 134319 (2022)
- Wu H, Lou Z, Yang H, Shen G, Nanoscale, 7, 1921 (2015)
- Xiang C, Li M, Zhi M, Manivannan A, Wu N, J. Power Sources, 226, 65 (2013)
- Xie M, Duan S, Shen Y, Fang K, Wang Y, Lin M, et al., ACS Energy Lett., 1, 814 (2016)
- Xie M, Xu Z, Duan S, Tian Z, Zhang Y, Xiang K, et al., Nano Res., 11, 216 (2018)
- Xie M, Zhou M, Zhang Y, Du C, Chen J, Wan L, J. Colloid Interface Sci., 608, 79 (2022)
- Xu M, Wang A, Xiang Y, Niu J, J. Clean Prod., 315, 128110 (2021)
- Xu X, Yang Y, Wang M, Dong P, Baines R, Shen J, et al., Ceram. Int., 42, 10719 (2016)
- Xu Y, Yan Y, Lu W, Yarlagadda S, Xu G, ACS Appl. Energy Mater., 4, 10639 (2021)
- Yang C, Li CYV, Li F, Chan KY, J. Electrochem. Soc., 160, H271 (2013)
- Yu X, Lu B, Xu Z, Adv. Mater., 26, 1044 (2014)
- Zhang C, Wei J, Chen L, Tang S, Deng M, Du Y, Nanoscale, 9, 15423 (2017)
- Zhang L, Wu HB, Lou XW, Chem. Commun., 48, 6912 (2012)
- Zhang S, Yu Y, Xie M, Du C, Chen J, Wan L, et al., Appl. Surf. Sci., 589, 153011 (2022)
- Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T, RSC Adv., 7, 3983 (2017)
- Zhao S, Yang H, Liu Y, Xing Y, Cui G, Liu Q, New J. Chem., 45, 11245 (2021)