화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.116, 411-427, December, 2022
Simulations of water vaporization in novel internal-intensified spouted beds: Multiphase-flow, heat and mass transfer
E-mail:
Novel internal-intensified spouted beds (SBs) with swirl-nozzle anticlockwise-axial-swirler (SNAAS) and swirl-nozzle clockwise-axial-swirler (SNCAS) were proposed to improve the shortcomings of conventional SBs. The water vaporization in novel internal-intensified, conventional and swirl-nozzle SBs was simulated and the multiphase flow behavior and interphase heat and mass transfer in process were analyzed. Simulation results show the co-swirling action of novel combined internal-intensified makes gas drive particles move helically upward around the axial-swirler. Therefore, compared with conventional and swirler-nozzle SBs, the radial slip velocity of gas–solid and gas–liquid in two novel SBs are larger, and the contact between gas–liquid-solid phases is more sufficient. The gas–liquid-solid three-phase temperature, water vaporization rate, and gas moisture content of two novel internal-intensified all reached the highest, indicating that novel combined internal-intensified structures are beneficial to promoting the interphase heat and mass transfer during the water vaporization process. The mass transfer enhancement factors of SNAAS and SNCAS structures are 1.91 and 1.36 times that of conventional SB, respectively.
  1. Ren Y, Shen G, Shen H, Zhong Q, Xu H, Meng W, Zhang W, Yu X, Yun X, Luo Z, et al., Atmos. Res., 260, 105709 (2021)
  2. Xu XJ, Wu YN, Xiao QY, Xie P, Ren NQ, Yuan YX, et al., Environ. Res., 205, 112541 (2022)
  3. Yuan P, Ma H, Shen B, Ji Z, Sci. Total Environ., 806, 150958 (2022)
  4. Orozco-Mena RE, Márquez RA, Mora-Domínguez KI, Collins-Martinez VH, Herrera-Peraza EF, Perez-Vega SB, et al., Chem. Eng. J., 430, 133072 (2022)
  5. Maheswari C, Krishnamurthy K, Paragridwaran R, Atmos. Pollut. Res., 5(3), 464 (2014)
  6. Zhou J, Ding B, Tang C, Xie JB, Wang B, Zhang H, et al., Chem. Eng. J., 327, 914 (2017)
  7. Zhang Y, Wang Y, Liu Y, Gao H, Shi Y, Lu M, et al., Sep. Purif. Technol., 259, 118223 (2021)
  8. Li X, Han J, Liu Y, Dou Z, Zhang TA, Sep. Purif. Technol., 281, 119849 (2022)
  9. Xu G, Guo Q, Kaneko T, Kato K, Adv. Environ. Res., 4(1), 9 (2000)
  10. Zhang X, Wang N, Energy Procedia, 14, 1659 (2012)
  11. Wang X, Wang S, Wang R, Yuan Z, Shao B, Fan J, Powder Technol., 378, 191 (2021)
  12. Yue Y, Wang S, Bahl P, de Silva C, Shen Y, Chem. Eng. J., 418, 129320 (2021)
  13. Van Buijtenen MS, Börner M, Deen NG, Heinrich S, Antonyuk S, Kuipers JAM, Powder Technol., 206(1), 139 (2011)
  14. Ge M, Manikkam P, Ghossein J, Subramanian RK, Coutier-Delgosha O, Zhang G, Energy, 254, 124426 (2022)
  15. Ge M, Sun C, Zhang G, Coutier-Delgosha O, Fan D, Ultrason. Sonochem., 86, 106035 (2022)
  16. Ge M, Petkovšek M, Zhang G, Jacobs D, Coutier-Delgosha O, Int. J. Heat Mass Transf., 170, 120970 (2021)
  17. Ge M, Zhang G, Petkovšek M, Long K, Coutier-Delgosha O, J. Clean Prod., 338, 130470 (2022)
  18. Qu H, Liu Y, Lin H, Tang S, Wang R, Xue L, et al., Int. J. Multiph. Flow, 146, 103873 (2022)
  19. Wu F, Yang C, Che X, Ma X, Yan Y, Zhou W, Chem. Eng. J., 393, 124737 (2020)
  20. Scharler R, Archan G, Rakos C, von Berg L, Lello D, Hochenauer C, et al., Energy Conv. Manag., 247, 114755 (2021)
  21. Han C, Bai L, Zhou C, Sun W, Zhou L, Powder Technol., 399, 117179 (2022)
  22. Yue Y, Wang S, Shen Y, Chem. Eng. Sci., 245, 116942 (2021)
  23. Wang Z, Saidi M, Lim CJ, Grace JR, Tabrizi HB, Chen Z, et al., Chem. Eng. J., 290, 63 (2016)
  24. Feng D, Li H, Zhu M, Han L, Zhou Y, Powder Technol., 408, 117693 (2022)
  25. E D, Zhou P, Guo S, Zeng J, Cui J, Jiang Y, Lu Y, Jiang Z, Li Z, Kuang S, Particle shape effect on hydrodynamics and heat transfer in spouted bed: A CFD–DEM study Particuology 69, 10-21, 2022.
  26. Sukunza X, Pablos A, Tellabide M, Estiati I, Freire FB, Aguado R, et al., Powder Technol., 405, 117506 (2022)
  27. Che X, Wu F, Ma X, Front. Chem. Sci. Eng., 16(6), 909 (2022)
  28. Du J, Yue K, Wu F, Ma X, Hui Z, Powder Technol., 383, 471 (2021)
  29. Hooshdaran B, Haghshenasfard M, Hosseini SH, Esfahany MN, Lopez G, Olazar M, J. Anal. Appl. Pyrolysis, 154, 105011 (2021)
  30. Kang P, Hu XE, Lu Y, Wang K, Han L, Yuan H, Luo X, Zhou Y, Modeling and Optimization for Gas Distribution Patterns on Biomass Gasification Performance of Bubbling Spout Fluidized Bed. Energy & Fuels, 2020, XXXX
  31. Shi H, Reza MO, Nikrityuk PA, Powder Technol., 380, 143 (2021)
  32. Santos KG, Francisquetti MCC, Malagoni RA, Barrozo MAS, Dry. Technol., 33(14), 1746 (2015)
  33. Li P, Hou R, Zhang C, Wang T, Chem. Eng. Sci., 247, 117069 (2022)
  34. Du J, Wu F, Ma X, Wang G, Ind. Eng. Chem. Res., 60, 11317 (2021)
  35. Wu F, Yu Z, Shang L, Ma X, Zhou W, Adv. Powder Technol., 30(10), 2178 (2019)
  36. Sutanto W, Epstein N, Grace JR, Powder Technol., 44(3), 205 (1985)
  37. Tellabide M, Estiati I, Atxutegi A, Altzibar H, Olazar M, J. Taiwan Inst. Chem. Eng., 123, 1 (2021)
  38. Yang S, Wang H, Wei Y, Hu J, Chew JW, Powder Technol., 360, 658 (2020)
  39. Gu W, Li H, Liu S, Zhou Y, Powder Technol., 354, 211 (2019)
  40. Zhang XL, Ge MM, Zhang G, Coutier-Delgosha O, Phys. Fluids, 33, 035148 (2021)
  41. Launder BE, Spalding DB, Lectures in mathematical models of turbulence. 1972.
  42. Schaeffer DG, J. Differential Equations, 66(1), 19 (1987)
  43. Abramzon B, Sirignano WA, Int. J. Heat Mass Transf., 32(9), 1605 (1989)
  44. Ranz WE, Marshall WR, Chem. Eng. Prog., 48(173), 141 (1952)
  45. Ma XX, Kaneko T, Xu G, Kato K, Fuel, 80(5), 673 (2001)
  46. Ma XX, Kaneko T, Tashimo T, Yoshida T, Kato K, Chem. Eng. Sci., 55(20), 4643 (2000)
  47. Wu F, Che X, Huang Z, Duan H, Ma X, Zhou W, ACS Omega, 5(2), 1014 (2020)
  48. Van Hoecke L, Boeye D, Quiroga A, Patience G, Perreault P, Can. J. Chem. Eng. (2022)
  49. Benedict LH, Gould RD, Exp. Fluids, 22(2), 129 (1996)