Journal of Industrial and Engineering Chemistry, Vol.116, 191-198, December, 2022
Selective production of ethylene from CO2 over CuAg tandem electrocatalysts
E-mail:
The electrochemical reduction reaction of CO2 (CO2RR) is desirable for decreasing CO2 concentration in the atmosphere and producing value-added chemicals. The development of advanced catalysts is a key challenge for the practical application of CO2RR. Recently, the bimetallic catalysts with two or more reaction sites acting synergistically are one of the most interesting catalysts. Herein, CuAg bimetallic catalysts with various Cu/Ag ratios are synthesized by the ultrasonic spray pyrolysis (USP) method for the selective production of ethylene (C2H4) via CO2RR. The electrocatalytic performances of the CuAg catalysts with different compositions are evaluated in a full flow single cell and the Cu90Ag10 exhibits 1.5 times the higher C2H4 Faradaic efficiency and the C2H4 current density at a cell voltage of 2.2 V than the bare Cu. Ag in the bimetallic catalysts provides additional CO via desorption-re-adsorption and diffusion process for CAC coupling on the Cu surface to synthesize C2H4. In addition, the improved performance of the Cu90Ag10 is attributed to not only the synergistic effect between Cu and Ag but also the appropriate Cu/ Ag ratio.
- Hori Y, Mod. Asp. Electrochem., 42(42), 89 (2008)
- Gao J, Zhu C, Zhu M, Fu Y, Huang H, Liu Y, Kang Z, ACS Sustain. Chem. Eng., 7(3), 3536 (2019)
- Zhao C, Wang J, Chem. Eng. J., 293, 161 (2016)
- Kim YE, Kim B, Lee W, Ko YN, Youn MH, Jeong SK, Park KT, Oh J, Chem. Eng. J., 413 (2021)
- Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J, ChemPhysChem, 18(22), 3266 (2017)
- Zhang G, Zhao ZJ, Cheng D, Li H, Yu J, Wang Q, Gao H, Guo J, Wang H, Ozin GA, Wang T, Gong J, Nat. Commun., 12(1), 1 (2021)
- Uemoto N, Furukawa M, Tateishi I, Katsumata H, Kaneco S, ChemEngineering, 3(1), 1 (2019)
- Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I, Chem. Rev., 119(12), 7610 (2019)
- Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS, Catal. Sci. Technol., 5(1), 161 (2015)
- Gao D, Sinev I, Scholten F, Arán-Ais RM, Divins NJ, Kvashnina K, Timoshenko J, Cuenya BR, Angew. Chem.-Int. Edit., 131(47), 17203 (2019)
- Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ, J. Am. Chem. Soc., 141(19), 7646 (2019)
- Garza AJ, Bell AT, Head-Gordon M, ACS Catal., 8(2), 1490 (2018)
- Schouten KJP, Kwon Y, Van Der Ham CJM, Qin Z, Koper MTM, Chem. Sci., 2(10), 1902 (2011)
- Sun Z, Ma T, Tao H, Fan Q, Han B, Chem, 3(4), 560 (2017)
- Nie X, Luo W, Janik MJ, Asthagiri A, J. Catal., 312, 108 (2014)
- Reske R, Mistry H, Behafarid F, Cuenya BR, Strasser P, J. Am. Chem. Soc., 136(19), 6978 (2014)
- Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Nat. Chem., 10(9), 974 (2018)
- Sheng T, Sun SG, J. Electroanal. Chem., 793, 184 (2017)
- Feng X, Jiang K, Fan S, Kanan MW, ACS Cent. Sci., 2(3), 169 (2016)
- Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT, ACS Sustain. Chem. Eng., 4(3), 231 (2016)
- Tan D, Lee W, Kim YE, Ko YN, Jeon YE, Hong J, Jeong SK, Park KT, ACS Sustain. Chem. Eng., 8(29), 10639 (2020)
- Ye K, Cao A, Shao J, Wang G, Si R, Ta N, Xiao J, Wang G, Sci. Bull., 65(9), 711 (2020)
- Xiao Y, Tang L, Zhang W, Shen C, Comput. Mater. Sci., 192 (2021)
- Choi YW, Scholten F, Sinev I, Cuenya BR, J. Am. Chem. Soc., 141(13), 5261 (2019)
- Kim D, Resasco J, Yu Y, Asiri AM, Yang P, Nat. Commun., 5, 1 (2014)
- Chang Z, Huo S, Zhang W, Fang J, Wang H, J. Phys. Chem. C, 121(21), 11368 (2017)
- She X, Zhang T, Li Z, Li H, Xu H, Wu J, Cell Reports Phys. Sci., 1(4) (2020)
- Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7(7), 4822 (2017)
- Wang J, Li Z, Dong C, Feng Y, Yang J, Liu H, Du X, ACS Appl. Mater. Interfaces, 11(3), 2763 (2019)
- Lee W, Kim YE, Youn MH, Jeong SK, Park KT, Angew. Chem.-Int. Edit., 57(23), 6883 (2018)
- Kresse G, Joubert D, Phys. Rev. B, 59(3), 1758 (1999)
- Kresse G, Furthmuller J, Phys. Rev. B, 54(16), 11169 (1996)
- Perdew JP, Burke K, Wang Y, Phys. Rev. B, 54(23), 16533 (1996)
- Klimes J, Michaelides A, J. Chem. Phys., 137(12) (2012)
- Blochl PE, Phys. Rev. B, 50(24), 17953 (1994)
- Henkelman G, Jonsson H, J. Chem. Phys., 113(22), 9978 (2000)
- Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 113(22), 9901 (2000)
- Yang C, Ko BH, Hwang S, Liu Z, Yao Y, Luc W, Cui M, Malkani AS, Li T, Wang X, Dai J, Xu B, Wang G, Su D, Jiao F, Hu L, Sci. Adv., 6(17), 1 (2020)
- Nag S, Mahdak KC, Devaraj A, Gohil S, Ayyub P, Banerjee R, J. Mater. Sci., 44(13), 3393 (2009)
- Murray JL, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 15A(2), 261 (1984)
- Elliott RP, Shunk FA, Giessen WC, Bull. Alloy Phase Diagrams, 1(2), 23 (1980)
- Sheng HW, Wilde G, Ma E, Acta Mater., 50(3), 475 (2002)
- Sun Y, Fournier R, Can. J. Chem., 91(9), 832 (2013)
- Eom N, Messing ME, Johansson J, Deppert K, ACS Nano, 15(5), 8883 (2021)
- Ferrando R, Jellinek J, Johnston RL, Chem. Rev., 108(3), 845 (2008)
- Giri SD, Sarkar A, J. Electrochem. Soc., 163(3), H252 (2016)
- Caballero-Briones F, Artés JM, Díez-Pérez I, Gorostiza P, Sanz F, J. Phys. Chem. C, 113(3), 1028 (2009)
- Luo H, Ji X, Cheng S, RSC Adv., 10(14), 8453 (2020)
- Hori Y, Wakebe HHI, Tsukamoto T, Koga O, Electrochim. Acta, 39(11-12), 1833 (1994)
- Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)