화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.11, 3039-3047, November, 2022
Selective absorption of H2S and CO2 from simulated coke oven gas by aqueous blends of N-methyldiethanolamine and tetramethylammonium glycine
E-mail:
Tetramethylammonium glycine ([N1111][Gly]) can be completely ionized into cation [N1111]+ and anion [Gly]- in aqueous solution. The anion contains an amino -NH2 and a carboxyl -COO-, both of which can react with hydrogen sulfide (H2S). Therefore, [N1111][Gly] was used to promote the selective absorption of H2S in coke oven gas (COG) by N-methyldiethanolamine (MDEA). The absorption performance and selectivity of H2S in the aqueous solution of MDEA-[N1111][Gly] were investigated. The effects of MDEA mass fraction, [N1111][Gly] mass fraction, temperature, H2S partial pressure and CO2 partial pressure on the absorption capacity and selectivity were clarified. The results showed that an aqueous solution of MDEA-[N1111][Gly] has good selectivity for H2S in COG. The absorption capacity was large and the mass fraction of the solute in the absorbent reached more than 0.55, thereby having outstanding advantages in the aspects of saving energy consumption and operating cost and having a good application potential.
  1. China business intelligence network
  2. Park JK, Lee SY, Kim JI, Um W, Yoo C, J. Environ. Chem. Eng., 9, 105037 (2021)
  3. Wang GP, China Metallurgy, 22, 25 (2012)
  4. de Oliveira Carneiro L, de Vasconcelos SF, de Farias Neto GW, Brito RP, Brito KD, Sep. Purif. Technol., 257, 117862 (2021)
  5. Yan H, Tian JS, Fuel Chem. Process., 35, 25 (2004)
  6. Kazak LA, Yarmoshik AF, Li VM, Coke Chem., 61, 376 (2018)
  7. Yan CQ, Yu LR, Fuel. Chem. Process., 35, 26 (2004)
  8. Huang P, Ling KC, Coal Convers., 28, 64 (2005)
  9. Zhang LJ, Metallurgical Power, 3, 17 (2013)
  10. Nasir P, Mather AE, Can. J. Chem. Eng., 55, 715 (1977)
  11. Song CF, Liu QL, Ji N, Deng S, Zhao J, Kitamura Y, Appl. Energy, 204, 353 (2017)
  12. Anu F, Rikov YA, Kuranov GL, Smirnova NA, Russ. J. Appl. Chem., 80, 515 (2007)
  13. Li MH, Shen KP, J. Chem. Eng. Data, 38, 105 (1993)
  14. An JR, Ma PF, Tang JF, Jiang X, Li J, Zhang GJ, Zhao MY, Chem. Ind. Eng. Prog., 35, 3866 (2016)
  15. Glasscock DA, Rochelle GT, AIChE J., 39, 1389 (1993)
  16. Mandal BP, Biswas A, Bandyopadhyay S, Sep. Purif. Technol., 35, 191 (2004)
  17. Li M, Zhang S, Zhang P, Qin K, Xu B, Zhou J, Yuan C, Cao Q, Xiao H, Chem. Eng. J., 436, 135251 (2022)
  18. Haghtalab A, Afsharpour A, Fluid Phase Equilib., 406, 10 (2015)
  19. Savage DW, Funk EW, Yu WC, Astarita G, Ind. Eng. Chem. Fundam., 25, 326 (1986)
  20. Kazemi A, Malayeri M, Kharaji AG, Shariati A, J. Nat. Gas Sci. Eng., 20, 16 (2014)
  21. Abdulrahman RK, Sebastine IM, J. Nat. Gas Sci. Eng., 14, 116 (2013)
  22. Tian XF, Wang LM, Fu D, Li C, Energy Fuels, 33, 629 (2019)
  23. Tian XF, Wang LM, Fu D, Energy Fuels, 33, 8413 (2019)
  24. Tian XF, Wang LM, Zhang P, Fu D, Wang ZY, Environ. Sci. Pollut. Res., 28, 5822 (2021)
  25. Sidi-Boumedine R, Horstmann S, Fischer K, Provost E, Fürst W, Gmehling J, Fluid Phase Equilib., 218, 149 (2004)
  26. Rebolledo-Libreros ME, Trejo A, Fluid Phase Equilib., 224, 83 (2004)
  27. Xia JZ, Kamps A, Maurer G, Fluid Phase Equilib., 207, 23 (2003)
  28. Speyer D, Böttger A, Maurer G, Ind. Eng. Chem. Res., 51, 12549 (2012)
  29. Bi ZQ, Shen LS, Anhui Metallurgy, 2, 29 (2008)
  30. Zhang BY, Jin DX, Sci. Technol. Baotou Steel Co., 2, 4 (2001)
  31. Cai Z, Ma Y, Zhang J, Wu W, Cao Y, Jiang L, Huang K, Fuel, 313, 122664 (2022)
  32. Cao Y, Zhang J, Ma Y, Wu W, Huang K, Jiang L, ACS Sustain. Chem. Eng., 9, 7352 (2021)
  33. Giernoth R, Angew. Chem.-Int. Edit., 49, 2834 (2010)
  34. Damanafshan M, Mokhtarani B, Mirzaei M, Mafi M, Sharifi A, Jalili AH, J. Chem. Eng. Data, 63, 2135 (2018)
  35. Barati-Harooni A, Najafi-Marghmaleki A, Mohammadi AH, Int. J. Greenh. Gas Con., 63, 338 (2017)
  36. Huang K, Zhang XM, Zhou LS, Tao DJ, Fan JP, Chem. Eng. Sci., 173, 253 (2017)
  37. Liu F, Chen W, Mi J, Zhang JY, Kan X, Zhong FY, Huang K, Zheng AM, Jiang L, AIChE J., 65, e16574 (2019)
  38. Nematpour M, Jalili AH, Ghotbi C, Rashtchian D, J. Nat. Gas Sci. Eng., 30, 583 (2016)
  39. Wang LY, Xu YL, Li ZD, Wei YN, Wei JP, Energy Fuels, 32, 10 (2017)
  40. Seyedhosseini B, Izadyar M, Housaindokht MR, J. Phys. Chem. A, 121, 4352 (2017)
  41. Fu D, Zhang P, Mi CL, Energy, 101, 288 (2016)
  42. Fu D, Xie JL, J. Chem. Thermodyn., 102, 310 (2016)
  43. Zhou ZM, Jing GH, Zhou LJ, Chem. Eng. J., 204, 235 (2012)
  44. Aparicio S, Atilhan M, Energy Fuels, 24, 4989 (2015)
  45. Lee WY, Park SY, Lee KB, Nam SC, Energy Fuels, 34, 1992 (2020)
  46. Lu JG, Zheng YF, He DL, Sep. Purif. Technol., 52, 209 (2006)
  47. Jalili AH, Safavi M, Ghotbi C, Mehdizadeh A, Hosseini-Jenab M, Taghikhani V, J. Phys. Chem. B, 116, 2758 (2012)
  48. Jalili AH, Shokouhi M, Maurer G, Hosseini-Jenab M, J. Chem. Thermodyn., 67, 55 (2013)
  49. Shiflett MB, Niehaus AMS, Yokozeki A, J. Chem. Eng. Data, 55, 4785 (2010)
  50. Huang K, Zhang XM, Xu Y, Wu YT, Hu XB, Xu Y, AIChE J., 60, 4232 (2014)
  51. Shiflett MB, Yokozeki A, Fluid Phase Equilib., 294, 105 (2010)