화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.5, 496-501, October, 2022
석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성
Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials
E-mail:
초록
본 연구에서는 석유 정제 부산물인 석유계 잔사유를 이용하여 리튬이차전지용 음극재를 제조하였다. 석유계 잔사유 중 열분해 연료유(pyrolysis fuel oil, PFO), 유동접촉분해 데칸트 오일(fluidized catalyst cracking-decant oil, FCC-DO), 감 압잔사유(vacuum residue, VR)를 탄소 전구체로 사용하였다. MALDI-TOF, 원소분석(EA)을 통하여 석유계 잔사유의 물 리화학적 특징을 확인하였고, 잔사유로부터 제조된 음극재는 XRD, Raman 등의 분석을 통해 그 구조적 특징을 평가하 였다. VR은 PFO 및 FCC-DO에 비하여 광범위한 분자량 분포와 많은 양의 불순물을 함유하는 것을 확인할 수 있었고, PFO와 FCC-DO는 거의 유사한 물리화학적 특징을 나타내었다. XRD 분석결과로부터 탄화된 PFO와 FCC-DO는 유사 한 d002값을 나타내었다. 그러나 Lc 및 La값에서는 FCC-DO가 PFO보다 더 발달된 층상구조를 갖는 것으로 확인되었다. 또한, 전기화학적 특성 평가에서는 FCC-DO가 가장 우수한 사이클 특성을 나타내었다. 이러한 석유계 잔사유의 물리 화학적, 전기화학적 결과로 미루어 보아 FCC-DO가 PFO와 VR보다 더 우수한 리튬이차전지용 탄소 전구체인 것으로 사료된다.
In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking- decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.
  1. Park MS, Ko Y, Jung MJ, Lee YS, Carbon Lett., 16, 121 (2015)
  2. Cho JH, Bai BC, Carbon Lett., 31, 921 (2021)
  3. Kim DS, Kim KH, Lim C, Lee YS, Carbon Lett., 32, 321 (2022)
  4. Kim JG, Kim JH, Bai BC, Choi YJ, Im JS, Bae TS, Lee YS, Carbon Lett., 28, 24 (2018)
  5. An DH, Kim KH, Lim CH, Lee YS, Carbon Lett., 31, 1357 (2021)
  6. Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25, 78 (2018)
  7. Kim JG, Liu F, Lee CW, Lee YS, Im JS, Solid State Sci., 34, 38 (2014)
  8. Kim JH, Kim JG, Lee KB, Im JS, Carbon Lett., 29, 203 (2019)
  9. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176 (2018)
  10. Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
  11. Noel M, Santhanam R, J. Power Sources, 72, 53 (1998)
  12. Shim J, Striebel KA, J. Power Sources, 119-121, 934 (2003)
  13. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M, J. Power Sources, 194, 486 (2009)
  14. Kim KS, Hwang JU, Im JS, Lee JD, Kim JH, Kim MI, Carbon Lett., 30, 545 (2020)
  15. Cheng Y, Fang C, Su J, Yu R, Li T, J. Anal. Appl. Pyrolysis, 109, 90 (2014)
  16. Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS, Korean J. Chem. Eng., 33, 551 (1995)
  17. Jung JY, Park MS, Kim MI, Lee YS, Carbon Lett., 15, 262 (2014)
  18. Jung MJ, Ko Y, Lee YS, Appl. Chem. Eng., 26, 224 (2015)
  19. Kim KH, Lee S, An D, Lee YS, Appl. Chem. Eng., 28, 432 (2017)
  20. Jung MJ, Jung JY, Lee D, Lee YS, J. Ind. Eng. Chem., 22, 70 (2015)
  21. Jung JY, Lee YS, Carbon Lett., 15, 129 (2014)
  22. Seo SW, Kim JH, Lee YS, Im JS, Appl. Chem. Eng., 29, 652 (2018)
  23. Cho JH, Kim JH, Lee YS, Im JS, Kang SC, Appl. Chem. Eng., 32, 640 (2021)
  24. Kim KS, Im JS, Lee JD, Kim JH, Hwang JU, Appl. Chem. Eng., 30, 331 (2019)
  25. Kim JH, Lee S, Jeong E, Lee YS, Appl. Chem. Eng., 26, 706 (2015)
  26. Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
  27. Reich S, Thomsen C, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 362, 2271 (2004)
  28. Hwang JU, Lee JD, Korean Chem. Eng. Res., 55, 307 (2017)
  29. Lee HY, Lee JD, Korean Chem. Eng. Res., 54, 746 (2016)
  30. Jafaria SM, Khosravia M, Mollazadehb M, Electrochim. Acta, 203, 9 (2016)
  31. Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J, Adv. Energy Mater., 10, 2000283 (2020)
  32. Kaskhedikar NA, Maier J, Adv. Mater., 21, 2664 (2009)