화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.5, 482-487, October, 2022
V2O5/TiO2 촉매의 활성금속 함량이 촉매 활성에 미치는 영향
Effect of Active Metal Loading on Catalytic Activity of V2O5/TiO2 Catalysts
E-mail:
초록
본 연구에서는 V/TiO2 촉매를 사용하여 황화수소 상온 제거 특성을 평가하기 위해 촉매 활성 실험 및 특성 분석을 수행하였다. 최적 바나듐 함량은 10 wt%였고, 상대습도 60~80% 조건에서 60분 이상의 내구성을 보였다. BET 및 raman 분석을 통해, 표면에 노출된 바나듐의 구조가 V/TiO2 촉매 활성의 지배적인 요인인 것으로 나타났다. 또한 SEM, EDS 그리고 XRD 분석은 촉매 표면에 생성물인 황이 축적될 수 있음을 보였으며, 결과적으로 촉매의 내구성이 감소되었다. 따라서 촉매 산화와 재생 공정의 연계가 필요할 것으로 판단된다.
In this study, the activity test and characterization were performed to evaluate the hydrogen sulfide removal characteristics using a V/TiO2 catalyst at room temperature. The optimal vanadium loading was 1 0 w t % , a n d t h e d u r a b i l i t y w a s g r e a t e r t h a n 60 minutes at 60~80% relative humidity. The Brunauer-Emmett-Teller (BET) surface area and raman spectroscopy results con-firmed that the structure of the vanadium site exposed to the surface was a dominant factor in catalyst activity. From Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray crystallography (XRD) analyses, it was found that sulfur can be accumulated on the catalyst surface, which results in a decrease in durability under catalytic activity tests. Therefore, it is judged that a combined process of catalytic oxidation and regeneration is needed.
  1. Ko BC, Lee JK, Lee YS, Lee MG, Kam SK, J. Environ. Sci., 21, 1379 (2012)
  2. Ryu HW, Jo KS, Lee TH, Huh M, J. Korean Soc. Odor Res. Eng., 2, 69 (2003)
  3. Kim KY, Park JB, Kim CN, Lee KJ, J. Korean Soc. Occup. Environ. Hyg., 16, 36 (2016)
  4. Ko BC, Lee JK, Lee YS, Lee MG, Kam SK, J. Environ. Sci., 21, 1379 (2012)
  5. Choi SY, Jang YH, Kim SS, Appl. Chem. Eng., 29, 765 (2018)
  6. Choi SY, Han DH, Kim SS, Appl. Chem. Eng., 30, 460 (2019)
  7. Choi SY, Han DH, Kim SS, Clean Technol., 25, 189 (2019)
  8. Choudhury A, Shelford T, Felton G, Gooch C, Lansing S, Energies, 12, 4605 (2019)
  9. Chenar MP, Savoji H, Soltanieh M, Matsuura T, Tabe S, Korean J. Chem. Eng., 28, 902 (2011)
  10. Eom H, Jang Y, Choi SY, Lee SM, Kim SS, Appl. Catal. A: Gen., 590, 117365 (2020)
  11. Eom H, Lee SM, Kang H, Lee YH, Chang SW, Kim SS, J. Ind. Eng. Chem., 92, 252 (2020)
  12. Kang H, Lee YH, Kim SC, Chang SW, Kim SS, Appl. Chem. Eng., 32, 326 (2021)
  13. Barba D, Palma V, Ciambelli P, Int. J. Hydrog. Energy, 38, 328 (2013)
  14. Palma V, Barba D, Fuel, 135, 99 (2014)
  15. Palma V, Barba D, Int. J. Hydrog. Energy, 42, 1891 (2017)
  16. Palma V, Barba D, Gerardi V, J. Clean Prod., 111, 69 (2016)
  17. Shin MY, Park DW, Chung JS, Catal. Today, 63, 405 (2000)
  18. Shen L, Zheng X, Lei G, Li X, Cao Y, Jiang L, Chem. Eng. J., 346, 238 (2018)
  19. Pongthawornsakun B, Phatyenchuen S, Panpranot J, Praserthdam P, J. Environ. Chem. Eng., 6, 1414 (2018)
  20. Kan X, Chen X, Chen W, Mi J, Zhang JY, Liu F, Zheng A, Huang K, Shen L, Au C, Jiang L, ACS Sustain. Chem. Eng., 7, 7609 (2019)
  21. Park DW, Park BK, Park DK, Woo HC, Appl. Catal. A: Gen., 223, 215 (2002)
  22. Cho KY, Kim KJ, Riu DH, Carbon Lett., 7, 271 (2006)
  23. Kwon DW, Park KH, Hong SC, Appl. Catal. A: Gen., 451, 227 (2013)
  24. Moon SH, Lee SJ, Ryu IS, J. Korean Soc. Environ. Eng., 32, 928 (2010)
  25. Arora N, Deo G, Wachs IE, Hirt AM, J. Catal., 159, 1 (1996)
  26. Shin JH, Kwon DW, Hong SC, J. Korean Soc. Atmos. Environ., 33, 297 (2017)