화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.5, 466-470, October, 2022
아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조
Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate
E-mail:,
초록
최근 촉매 소각 공정은 휘발성 유기 화합물을 저온(< 450 °C)에서 고효율(> 95%)로 산화 및 분해하기 위해 상당한 주목을 받고 있다. 많은 귀금속 촉매 물질이 잘 연구되어 사용되고 있으나 단가가 비싸고 위험하다. 본연구에서는 Cu와 Mn 전구체의 공침법을 활용하여 간단하고 손쉬운 합성 방법을 개발함으로써 고활성 및 저비용의 Cu-Mn 바이메 탈 촉매를 제조하였다. 촉매 합성은 Cu와 Mn의 조성비를 조절하여 최적화하였다. 최적화된 촉매는 메조포러스 구조 로 230.8 m2/g의 넓은 표면적을 나타냈다. 촉매 성능을 입증하기 위해 에틸 아세테이트의 산화 반응에 대해 Cu-Mn 촉매를 테스트했으며, 250 °C의 저온에서 100%의 높은 전환 효율을 나타내었다.
The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 °C) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 °C.
  1. Luo M, Cheng Y, Peng X, Pan W, Chem. Eng. J., 369, 758 (2019)
  2. Napruszewska BD, Michalik A, Walczyk A, Duraczyëska D, Dula R, Rojek W, Litynska-Dobrzynska L, Bahranowski K, Sewicka EM, Materials, 11, 1365 (2018)
  3. Biemelt T, Wegner K, Teichert J, Kaskel S, Chem. Commun., 15, 5872 (2015)
  4. Dey S, Dhal GC, Mater. Sci. Technol., 3, 377 (2020)
  5. Said S, Mikhail S, Riad M, Mater. Sci. Technol., 3, 344 (2020)
  6. Bannai M, Houkabe A, Furukawa M, Kashiwagi T, Akisawa A, Yoshida T, Yamada H, Appl. Energy, 83, 929 (2006)
  7. Hart JR, Chemosphere, 54, 1539 (2004)
  8. Bai H, Wang Z, Zhang J, Wu J, Yue Y, Liu Q, Qian Q, J. Environ. Manage., 294, 113025 (2021)
  9. Dey S, Mehta NS, Appl. Energy Combust. Sci., 6, 100031 (2021)
  10. Yap YH, Lim MSW, Lee ZY, Lai KC, Jamaal MA, Wong FH, Ng HK, Lim SS, Tiong TJ, Ultrason. Sonochem., 40, 57 (2018)
  11. Dey S, Dhal GC, Mater. Today Chem., 14, 100180 (2019)
  12. Dey S, Mehta NS, Cleaner Eng. Technol., 4, 100171 (2021)
  13. Xu Y, Qu Z, Ren Y, Dong C, Appl. Surf. Sci., 560, 149983 (2021)
  14. Kim J, Min YH, Lee N, Cho E, Kim KY, Jeong G, Moon SK, Joo M, Kim DB, Kim J, Kim SY, Kim Y, Oh J, Sato S, ACS Omega, 2, 7424 (2017)
  15. Lin H, Chen D, Liu H, Zou X, Chen T, Aerosol. Air Qual. Res., 17, 1011 (2017)
  16. Lee MS, Kim SI, Lee M, Ye B, Kim T, Kim HD, Lee JW, Lee DH, Nanomaterials, 11, 1452 (2021)