화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.115, 544-553, November, 2022
High-capacity three-dimensional solar rechargeable micro-supercapacitor using MnO2/V2O5-based binary metal oxide nanocomposite ink
E-mail:,
Due to the variable nature of solar cells, the development of a novel energy storage system, such as solarcharged self-powered micro-supercapacitor (MSC) power cells, is imperative. Herein, we report a pendrawing MSC for powering portable units using high-performance binary metal oxide nanocomposite ink. For improving the capacitance of the MSC and operating its voltage up to 1.4 V, the nanocomposite ink demonstrated a redox strategy; this strategy involved fabricating MnO2, V2O5, and a conductive poly (3,4-ethylenedioxythiophene) (PEDOT) polymer onto graphene flakes as a sandwich structure. The MSC exhibited excellent electrochemical performance with an areal capacitance of 89.29 mF cm-2, a maximum energy density of 0.024 mWh cm-2 at a power density of 0.35 mW cm-2, and adequate cyclic stability (82 % capacitance retention after 2500 cycles). The strained MSC also exhibited mechanical stability within a potential window of 0–1.4 V at a scan rate of 100 mV s-1. Furthermore, vertically stacked MSC arrays connected in series and parallel networks were integrated with a commercial solar cell to fabricate solar-charged self-powered MSCs. The results showed that self-powered electronics integrated with pendrawn MSCs and solar cells have potential applications in the field of solar energy storage, including portable or wearable electronics.
  1. Hatamvand M, Kamrani E, Lira-Cantú M, Madsen M, Patil BR, Vivo P, et al., Nano Energy, 71, 104609 (2020)
  2. Meng F, Li Q, Zheng L, Energy Storage Mater., 8, 85 (2017)
  3. Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, et al., Sci. Adv., 2, e1600097 (2016)
  4. El-Hout SI, Attia SY, Mohamed SG, Abdelbasir S, J. Environ. Manage., 304, 114222 (2022)
  5. Liu L, Feng Y, Wu W, J. Power Sources, 410, 69 (2019)
  6. Zhai Q, Xiang F, Cheng F, Sun Y, Yang X, Lu W, et al., Energy Storage Mater., 33, 116 (2020)
  7. Li C, Cong S, Tian Z, Song Y, Yu L, Lu C, et al., Nano Energy, 60, 247 (2019)
  8. Huang ZH, Song Y, Liu XX, Chem. Eng. J., 358, 1529 (2019)
  9. Wu Y, Gao G, Yang H, Bi W, Liang X, Zhang Y, et al., J. Mater. Chem. A, 3, 15692 (2015)
  10. Ding Y, Peng Y, Chen S, Li Z, Zhang X, Falaras P, et al., Appl. Surf. Sci., 495, 143502 (2019)
  11. Wang Q, Ma Y, Liang X, Zhang D, Miao M, Chem. Eng. J., 371, 145 (2019)
  12. Brousse K, Pinaud S, Nguyen S, Fazzini PF, Makarem R, Josse C, et al., Adv. Energy Mater., 10, 1903136 (2020)
  13. Attia SY, Mohamed SG, Barakat YF, Hassan HH, Zoubi WA, Rev. Inorg. Chem., 42, 53 (2022)
  14. Maksoud MA, Bedir AG, Bekhit M, Abouelela MM, Fahim RA, Awed A, et al., Environ. Chem. Lett., 19, 3645 (2021)
  15. Perera SD, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris JP, et al., Adv. Energy Mater., 1, 936 (2011)
  16. Ahmed S, Mohamed SG, Attia SY, Barakat YF, Shoeib M, Tantawy N, J. Electroanal. Chem., 883, 115063 (2021)
  17. Park H, Song C, Jin SW, Lee H, Keum K, Lee YH, et al., Nano Energy, 83, 105837 (2021)
  18. Ahuja P, Ujjain SK, Kanojia R, Appl. Surf. Sci., 427, 102 (2018)
  19. Lee C, Kim SK, Choi JH, Chang H, Jang HD, J. Alloy. Compd., 735, 2030 (2018)
  20. Wang Y, Takahashi K, Lee KH, Cao G, Adv. Funct. Mater., 16, 1133 (2006)
  21. Wang Y, Shang H, Chou T, Cao G, J. Phys. Chem. B, 109, 11361 (2005)
  22. Liu Y, Qiao Y, Zhang W, Xu H, Li Z, Shen Y, et al., Nano Energy, 5, 97 (2014)
  23. Ma R, Bando Y, Zhang L, Sasaki T, Adv. Mater., 16, 918 (2004)
  24. Chernova NA, Roppolo M, Dillon AC, Whittingham MS, J. Mater. Chem., 19, 2526 (2009)
  25. Sumboja A, Foo CY, Wang X, Lee PS, Adv. Mater., 25, 2809 (2013)
  26. Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q, Adv. Funct. Mater., 22, 4584 (2012)
  27. Iqbal A, Hong J, Ko TY, Koo CM, Nano Converg., 8, 1 (2021)
  28. Lee J, Park MS, Kim JH, Nano Converg., 8, 1 (2021)
  29. Li F, Li G, Chen H, Jia JQ, Dong F, Hu YB, et al., J. Power Sources, 296, 86 (2015)
  30. Qu Q, Zhu Y, Gao X, Wu Y, Adv. Energy Mater., 2, 950 (2012)
  31. Yu P, Zhang X, Chen Y, Ma Y, Qi Z, Mater. Chem. Phys., 118, 303 (2009)
  32. Zhang X, Sun X, Zhang H, Zhang D, Ma Y, Mater. Chem. Phys., 137, 290 (2012)
  33. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, et al., J. Phys. Chem. C, 113, 14020 (2009)
  34. Cheah YL, Hagen RV, Aravindan V, Fiz R, Mathur S, Madhavi S, Nano Energy, 2, 57 (2013)
  35. Guo CX, Yilmaz G, Chen S, Chen S, Lu X, Nano Energy, 12, 76 (2015)
  36. Lee HU, Kim SW, J. Mater. Chem. A, 5, 13581 (2017)
  37. Lei Z, Christov N, Zhao X, Energy Environ. Sci., 4, 1866 (2011)
  38. Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X, et al., Adv. Funct. Mater., 19, 3420 (2009)
  39. Wu ZS, Parvez K, Feng X, Müllen K, Nat. Commun., 4, 1 (2013)
  40. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, et al., Nano Lett., 10, 708 (2010)
  41. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, et al., Nat. Nanotechnol., 5, 651 (2010)
  42. Guo CX, Sun K, Ouyang J, Lu X, Chem. Mater., 27, 5813 (2015)
  43. Murugan AV, Kale B, Kwon CW, Campet G, Vijayamohanan K, J. Mater. Chem., 11, 2470 (2001)
  44. Zhang X, Lee JS, Lee GS, Cha DK, Kim MJ, Yang DJ, et al., Macromolecules, 39, 470 (2006)
  45. Anothumakkool B, Soni R, Bhange SN, Kurungot S, Energy Environ. Sci., 8, 1339 (2015)
  46. Mumtaz M, de Cuendias A, Putaux JL, Cloutet E, Cramail H, Macromol. Rapid Commun., 27, 1446 (2006)
  47. Soni R, Bhange SN, Athira E, Chetry R, Kurungot S, ChemElectroChem, 6, 1861 (2019)
  48. Choi KS, Liu F, Choi JS, Seo TS, Langmuir, 26, 12902 (2010)
  49. Wu X, Liu J, Wu D, Zhao Y, Shi X, Wang J, et al., J. Mater. Chem. C, 2, 4044 (2014)
  50. Kanwat A, Jang J, Mater. Res. Bull., 74, 346 (2016)
  51. Choi KH, Ali A, Jo J, J. Mater. Sci. -Mater. Electron., 24, 4893 (2013)
  52. Jayashree M, Parthibavarman M, BoopathiRaja R, Prabhu S, Ramesh R, J. Mater. Sci. -Mater. Electron., 31, 6910 (2020)
  53. Kang M, Oh E, Kim I, Kim SW, Ryu JW, Kim YG, Curr. Appl. Phys., 12, 489 (2012)
  54. Meng LJ, Silva RA, Cui HN, Teixeira V, Dos Santos M, Xu Z, Thin Solid Films, 515, 195 (2006)
  55. Abd-Alghafour N, Ahmed NM, Hassan Z, Sens. Actuators A-Phys., 250, 250 (2016)
  56. Garreau S, Louarn G, Buisson J, Froyer G, Lefrant S, Macromolecules, 32, 6807 (1999)
  57. Farah AA, Rutledge SA, Schaarschmidt A, Lai R, Freedman JP, Helmy AS, J. Appl. Phys., 112, 113709 (2012)
  58. Garreau S, Duvail J, Louarn G, Synth. Met., 125, 325 (2001)
  59. Łapkowski M, Pro A, Synth. Met., 110, 79 (2000)
  60. Han YK, Chang MY, Huang WY, Pan HY, Ho KS, Hsieh TH, et al., J. Electrochem. Soc., 158, K88 (2011)
  61. Ye Z, Wang B, Liu G, Dong Y, Cui X, Peng X, et al., J. Electrochem. Soc., 163, A2724 (2016)
  62. Jadhav PR, Suryawanshi MP, Dalavi DS, Patil DS, Jo EA, Kolekar SS, et al., Electrochim. Acta, 176, 523 (2015)
  63. Miniach E, Sliwak A, Moyseowicz A, Fernández-Garcia L, González Z, Granda M, et al., Electrochim. Acta, 240, 53 (2017)
  64. Rothenberg G, Clark JH, Org. Process Res. Dev., 4, 270 (2000)
  65. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12, 481 (2000)
  66. Ross RA, Fairbridge C, Can. J. Chem., 62, 1483 (1984)
  67. Raju V, Rains J, Gates C, Luo W, Wang X, Stickle WF, et al., Nano Lett., 14, 4119 (2014)
  68. Su D, Dou S, Wang G, J. Mater. Chem. A, 2, 11185 (2014)
  69. Tepavcevic, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, et al., ACS Nano, 6, 530 (2012)
  70. Zhang Y, Sun C, Lu P, Li K, Song S, Xue D, CrystEngComm, 14, 5892 (2012)
  71. Chen K, Noh YD, Li K, Komarneni S, Xue D, J. Phys. Chem. C, 117, 10770 (2013)
  72. Yoo D, Kim J, Kim JH, Nano Res., 7, 717 (2014)
  73. Holzwarth U, Gibson N, Nat. Nanotechnol., 6 (2011)
  74. Yoon SB, Kim KB, Electrochim. Acta, 106, 135 (2013)
  75. Babakhani B, Ivey DG, Electrochim. Acta, 55, 4014 (2010)
  76. Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
  77. Simon P, Gogotsi Y, Dunn B, Science, 343, 1210 (2014)
  78. Zhang Y, Li L, Su H, Huang W, Dong X, J. Mater. Chem. A, 3, 43 (2015)
  79. Saravanakumar B, Purushothaman KK, Muralidharan G, Crystengcomm, 16, 10711 (2014)
  80. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH, J. Am. Chem. Soc., 131, 1802 (2009)
  81. Ardizzone S, Fregonara G, Trasatti S, Electrochim. Acta, 35, 263 (1990)
  82. Teli AM, Beknalkar SA, Pawar SA, Dubal DP, Dongale TD, Patil DS, et al., Energies, 13, 6124 (2020)
  83. Song Y, Liu TY, Xu XX, Feng DY, Li Y, Liu XX, Adv. Funct. Mater., 25, 4626 (2015)
  84. Boruah BD, Nandi S, Misra A, A.C.S. Appl. Energy Mater., 1, 1567 (2018)
  85. Wang L, Shu T, Guo S, Lu Y, Li M, Nzabahimana J, et al., Energy Storage Mater., 27, 150 (2020)
  86. Higgins TM, Coleman JN, A.C.S. Appl, Mater. Interfaces, 7, 16495 (2015)
  87. Hu H, Pei Z, Fan H, Ye C, Small, 12, 3059 (2016)