화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.115, 1-11, November, 2022
Microporous metal–organic frameworks: Synthesis and applications
E-mail:,
Metal-organic frameworks (MOFs) have emerged as porous hybrid materials composed of metal ions and organic ligands. MOFs have attracted the attention of many researchers due to their promising characteristics, including high porosity, surface area, and drug loading capacity, tunable pore size and structure, good biodegradability and biocompatibility, and ease of functionalization. MOFs are categorized into three groups based on their pore widths, including microporous, mesoporous, and macroporous MOFs. MOFs with micropores have shown special features. The internal pore widths of microporous MOFs are less than 2 nm, which leads to their high porosity and surface area. Microporous MOFs could be synthesized through different strategies, including modulator-induced defect-formation, structure-directing agents, pillared-layer assembly, bridging helical chain secondary building units, coordination capabilities of P@O moieties in the structure of a ligand, and using octahedral cage-like building units. Because of their unique properties, microporous MOFs have shown great potential for many applications such as separation, storage, catalysis, and sensing. A description of synthesis approaches and applications of microporous MOFs in recent years is provided in this review.
  1. Huxford RC, Rocca JD, Lin W, Curr. Opin. Chem. Biol., 14, 262 (2010)
  2. McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, et al.,, Angew. Chem.-Int. Edit., 49, 6260 (2010)
  3. Cho W, Lee HJ, Choi G, Choi S, Oh M, J. Am. Chem. Soc., 136, 12201 (2014)
  4. Furukawa H, Yaghi OM, J. Am. Chem. Soc., 131, 8875 (2009)
  5. Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorbeh F, Shahhosseini S, Dadashzadeh S, Asadian E, et al., Heliyon, 7, e06914 (2021)
  6. Li Y, Yang RT, Langmuir, 23, 12937 (2007)
  7. Jiang H, Wang Q, Wang H, Chen Y, Zhang M, ACS Appl. Mater. Interfaces, 8, 26817 (2016)
  8. Bhardwaj N, Bhardwaj SK, Mehta J, Kim KH, Deep A, ACS Appl. Mater. Interfaces, 9, 33589 (2017)
  9. Zhang Q, Wang J, Kirillov AM, Dou W, Xu C, Yang L, Fang R, et al., ACS Appl. Mater. Interfaces, 10, 23976 (2018)
  10. Huang W, Huang S, Chen G, Ouyang G, Chembiochem, 23, e2021005 (2022)
  11. Chakraborty A, Achari A, Eswaramoorthy M, Maji TK, Chem. Commun., 52, 11378 (2016)
  12. Li Y, Wang Y, Fan W, Sun D, Dalton Trans., 51, 4608 (2022)
  13. Wang D, Zhao C, Gao G, Xu L, Wang G, Zhu P, Nanomaterials, 9 (2019)
  14. Maranescu B, Visa A, Int. J. Mol. Sci., 23 (2022)
  15. Kitagawa S, Kitaura R, Noro SI, Angew. Chem.-Int. Edit., 43, 2334 (2004)
  16. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RO, O’Keeffe M, Kim J, Yaghi OM, Science, 329, 424 (2010)
  17. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al., Pure Appl. Chem., 87, 1051 (2015)
  18. Lo SH, Chien CH, Lai YL, Yang CC, Lee JJ, Raja DS, et al., J. Mater. Chem. A, 1, 324 (2013)
  19. Kirchon A, Day GS, Fang Y, Banerjee S, Ozdemir OK, Zhou HC, iScience, 5, 30 (2018)
  20. Schueth F, Schmidt W, Adv. Eng. Mater., 4, 269 (2002)
  21. Li B, Wen HM, Cui YYY, Zhou W, Chen B, Qian G, et al., NANO, 2, 21 (2018)
  22. Shao K, Pei J, Wang JX, Yang Y, Cui Y, Zhou W, et al., Chem. Commun., 55, 11402 (2019)
  23. Hong C, Zhou X, Huang W, Shan P, Dong F, Braz. J. Med. Biol. Res., 51 (2018)
  24. Mitra J, Guerrero EN, Hegde PM, Wang H, Boldogh I, Rao KS, et al., Biomacromolecules, 4, 678 (2014)
  25. Wang Z, Wang J, Li M, Sun K, Liu CJ, Sci. Rep., 4, 5939 (2014)
  26. Suárez CA, Velasco DM, Alem H, Medrano VGB, Caballero GR, Phys. Chem. Chem. Phys. (2020)
  27. Feng DD, Dong HM, Liu ZY, Zhao XJ, Yang EC, Dalton Trans., 47, 15344 (2018)
  28. Isaeva VI, Saifutdinov BR, Chernyshev VV, Vergun VV, Kapustin GI, Kurnysheva YP, Ilyin MM, Kustov LM, Molecules, 25 (2020)
  29. Ding BB, Weng YQ, Mao ZW, Lam CK, Chen XM, Ye BH, Inorg. Chem., 44, 8836 (2005)
  30. Qiu LG, Li ZQ, Wang YWW, Xu T, Jiang X, Chem. Commun., 3642 (2008)
  31. Cai G, Jiang HL, Angew. Chem.-Int. Edit., 56, 563 (2017)
  32. Guo X, Zhu G, Sun F, Li Z, Zhao X, Li X, et al., Inorg. Chem., 45, 2581 (2006)
  33. Wang Y, Li Y, Bai Z, Xiao C, Liu Z, Liu W, et al., Dalton Trans., 44, 18810 (2015)
  34. Li B, Wang H, Chen B, Chem. Asian J., 9, 1474 (2014)
  35. Seoane B, Dikhtiarenko A, Mayoral A, Tellez C, Coronas J, Kapteijn F, et al., CrystEngComm, 17, 1693 (2015)
  36. Pei J, Shao K, Zhang L, Wen HM, Li B, Qian G, Metal-Organic Framework, Springer (2020).
  37. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM, Science, 300, 1127 (2003)
  38. He H, Zhang DY, Guo F, Sun F, Inorg. Chem., 57, 7314 (2018)
  39. Tian D, Liu XJ, Feng R, Chen JLY, Huang L, Bu XH, ACS Appl. Mater. Interfaces, 10, 5618 (2018)
  40. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341, 1230444 (2013)
  41. Kuppler RJ, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, et al., Coord. Chem. Rev., 253, 3042 (2009)
  42. Sun Y, Zhou HC, Sci. Technol. Adv. Mater (2015)
  43. Lee YR, Kim J, Ahn WS, Korean J. Chem. Eng., 30, 1667 (2013)
  44. Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B, Chem. Soc. Rev., 50, 3143 (2021)
  45. Connolly BM, Mehta JP, Moghadam PZ, Wheatley AEH, Fairen-Jimenez D, Opinion C, et al., Chemistry, 12, 47 (2018)
  46. Liu D, Zou D, Zhu H, Zhang J, Small, 14, 1801454 (2018)
  47. Redfern LR, Farha OK, Chem. Sci., 10, 10666 (2019)
  48. Moggach SA, Bennett TD, Cheetham AK, Angew. Chem.-Int. Edit., 48, 7087 (2009)
  49. Ortiz AU, Boutin A, Fuchs AH, Coudert FX, J. Phys. Chem. Lett., 4, 1861 (2013)
  50. Halder A, Ghoshal D, CrystEngComm, 20, 1322 (2018)
  51. Kurmoo M, Chem. Soc. Rev., 38, 1353 (2009)
  52. Anderson SL, Tiana D, Ireland CP, Capano G, Fumanal M, Gładysiak A, et al., Chem. Sci., 11, 4164 (2020)
  53. Redel E, Wang Z, Walheim S, Liu J, Gliemann H, Wöll C, Appl. Phys. Lett., 103, 091903 (2013)
  54. Li W, Henke S, Cheetham AK, APL Mater., 2, 123902 (2014)
  55. Tian YQ, Cai CX, Ji Y, You XZ, Peng SM, Lee GH, Angew. Chem.-Int. Edit., 114, 1442 (2002)
  56. Burrows AD, Frost CG, Mahon MF, Richardson C, Angew. Chem.-Int. Edit., 120, 8610 (2008)
  57. Zhang X, Chen Z, Liu X, Hanna SL, Wang X, Taheri-Ledari R, et al., Chem. Soc. Rev., 49, 7406 (2020)
  58. Li H, Eddaoudi M, Groy TL, Yaghi O, J. Am. Chem. Soc., 120, 8571 (1998)
  59. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, et al., J. Am. Chem. Soc., 134, 15016 (2012)
  60. Baumann AE, Burns DA, Liu B, Thoi VS, Commun. Chem., 2, 86 (2019)
  61. Lv XL, Tong M, Huang H, Wang B, Gan L, Yang Q, et al., J. Solid State Chem., 223, 104 (2015)
  62. Liu Y, Yang G, Jin S, Xu L, Zhao CX, ChemPlusChem, 85, 2143 (2020)
  63. Ren J, Dyosiba X, Musyoka NM, Langmi HW, Mathe M, Liao S, Coord. Chem. Rev., 352, 187 (2017)
  64. Silva P, Vilela SM, Tome JP, Paz FAA, Chem. Soc. Rev., 44, 6774 (2015)
  65. Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR, Chem. Soc. Rev., 46, 3453 (2017)
  66. Isaeva V, Kustov L, Russ. Chem. Bull., 65, 2103 (2016)
  67. Khan NA, Jhung SH, Coord. Chem. Rev., 285, 11 (2015)
  68. Zhang S, Pei X, Gao H, Chen S, Wang J, Chin. Chem. Lett., 31, 1060 (2020)
  69. Yaghi O, Li H, J. Am. Chem. Soc., 117, 10401 (1995)
  70. Cheng X, Zhang A, Hou K, Liu M, Wang Y, Song C, et al., Dalton Trans., 43 (2014)
  71. Asadian E, Ahmadi M, Keçili R, Ghorbani-Bidkorbeh F, Cancer Nanotheranostics, Springer (2021).
  72. Chen C, Feng X, Zhu Q, Dong R, Yang R, Cheng Y, et al., Inorg. Chem., 58, 2717 (2019)
  73. Mendes RF, Rocha J, Paz FAA, in: Mozafari M, (Ed.), Metal-Organic Frameworks for Biomedical Applications, Woodhead Publishing (2020).
  74. Cho HY, Kim J, Kim SN, Ahn WS, Microporous Mesoporous Mater., 169, 180 (2013)
  75. Vaitsis C, Sourkouni G, Argirusis C, in: Mozafari M, (Ed.), Metal-Organic Frameworks for Biomedical Applications, Woodhead Publishing (2020).
  76. Al-Kutubi H, Gascon J, Sudhölter EJ, Rassaei L, ChemElectroChem, 2, 462 (2015)
  77. Tanaka S, in: Mozafari M, (Ed.), Metal-Organic Frameworks for Biomedical Applications, Woodhead Publishing (2020).
  78. Zheng W, Hao X, Zhao L, Sun W, Ind. Eng. Chem. Res., 56, 5899 (2017)
  79. Bumstead AM, Cordes DB, Dawson DM, Chakarova KK, Mihaylov MY, Hobday CL, Düren T, Hadjiivanov KI, Slawin AMZ, Ashbrook SE, Chemistry, 24, 6115 (2018)
  80. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, et al., J. Am. Chem. Soc., 130, 13850 (2008)
  81. Qiu LG, Li TXZQ, Wang W, Jiang YWX, Tian XY, Zhang LD, Angew. Chem.-Int. Edit., 47, 9487 (2008)
  82. Liu SHM, Li K, Song C, Zhang G, Guo X, RSC Adv., 7, 581 (2017)
  83. He WW, Li SL, Yang GS, Lan YQ, Su ZM, Fu Q, Chem. Commun., 48, 10001 (2012)
  84. Wang B, Yan Y, Ding CF, J. Chromatogr. A, 1671, 462971 (2022)
  85. Zhang JW, Hu MC, Li SN, Jiang YC, Zhai QG, Dalton Trans., 46, 836 (2017)
  86. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, et al., Environ. Sci. Eng., 7, 326 (2013)
  87. Lin JB, Zhang JP, Chen XM, J. Am. Chem. Soc., 132, 6654 (2010)
  88. An J, Geib SJ, Rosi NL, J. Am. Chem. Soc., 132, 38 (2010)
  89. Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM, J. Am. Chem. Soc., 131, 3875 (2009)
  90. Das MC, Xiang HXS, Zhang Z, Arman HD, Qian G, Chen B, et al., Chem.-Eur. J., 17, 7817 (2011)
  91. He Y, Zhang Z, Xiang S, Wu H, Fronczek FR, Zhou W, Krishna R, et al., Chem.-Eur. J., 18, 1901 (2012)
  92. He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B, et al., Chem.-Eur. J., 18, 613 (2012)
  93. Chang M, Zhao Y, Yang Q, Liu D, ACS Omega, 4, 14511 (2019)
  94. Wang H, Li J, Acc. Chem. Res., 52, 1968 (2019)
  95. Wang H, Dong X, Colombo V, Wang Q, Liu Y, Liu W, et al., Adv. Mater., 30, 1805088 (2018)
  96. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM, (2009).
  97. Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J, Angew. Chem.-Int. Edit., 49, 548 (2010)
  98. Valvekens P, Vermoortele F, De Vos D, Catal. Sci. Technol., 3, 1435 (2013)
  99. Hou X, Wang J, Mousavi B, Klomkliang N, Chaemchuen S, Dalton Trans. (2022)
  100. Gupta V, Mandal SK, Inorg. Chem., 59, 4273 (2020)
  101. Horike S, Dinca M, Tamaki K, Long JR, J. Am. Chem. Soc., 130, 5854 (2008)
  102. Jiang BB, Yang J, Liu YY, Ma JF, ACS Appl. Mater. Interfaces, 9, 39441 (2017)
  103. Hao JN, Yan B, Adv. Funct. Mater., 27, 1603856 (2017)
  104. Lustig ZHWP, Zhang J, Zheng C, Wang H, Teat SJ, Gong Q, et al., J. Am. Chem. Soc., 137, 16209 (2015)
  105. Wang S, Cao T, Yan H, Li Y, Li JLRMD, Dou J, et al., Inorg. Chem., 55, 5139 (2016)
  106. Wang JX, Yin J, Shekhah O, Bakr OM, Eddaoudi M, Mohammed OF, ACS Appl. Mater. Interfaces, 14, 9970 (2022)
  107. Gao Y, Zhang X, Sun W, Liu Z, Dalton Trans., 44, 1845 (2015)
  108. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, et al., Chem. Soc. Rev., 41, 1261 (2012)
  109. Zhou X, Li H, Xiao H, Li L, Zhao Q, Yang T, et al., Dalton Trans., 42, 5718 (2013)
  110. Wang GY, Song C, Kong DM, Ruan WJ, Chang Z, Li Y, J. Mater. Chem. A, 2, 2213 (2014)
  111. Ye Y, Lin RB, Cui H, Alsalme A, Zhou W, Yildirim T, et al., Dalton Trans., 49, 3658 (2020)
  112. Fan W, Wang X, Zhang X, Liu X, Wang Y, Kang Z, et al., ACS Cent. Sci., 5, 1261 (2019)
  113. Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR, J. Am. Chem. Soc., 128, 16876 (2006)
  114. Wen HM, Wang H, Li B, Cui Y, Wang H, Qian G, et al., Inorg. Chem., 55, 7214 (2016)
  115. Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED, Chemistry, 27, 4531 (2021)
  116. Lin JM, He CT, Liu Y, Liao PQ, Zhou DD, Zhang JP, et al., Angew. Chem.-Int. Edit., 128, 4752 (2016)
  117. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T, J. Am. Chem. Soc., 135, 11887 (2013)
  118. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M, Trends Anal. Chem., 118, 401 (2019)
  119. Zhang Z, Yao ZZ, Xiang S, Chen B, Energy Environ. Sci., 7, 2868 (2104)
  120. Dinca M, Long JR, Angew. Chem.-Int. Edit., 47, 6766 (2008)
  121. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, et al., Science, 300, 1127 (2003)