화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.11, 2991-3002, November, 2022
Flow behavior of gadolinium doped ceria under different polymeric and hydrodynamic environment for tape casting application
E-mail:,
The present investigation consists of a comprehensive analysis of the rheological properties of tape casting slurry and optimization of its composition through rheological results. Formulation of slurry consists of gadolinium doped ceria (GDC) powder, solvent (ethanol and toluene), dispersant (menhaden fish oil), plasticizer (benzyl butyl phthalate160 and polyethylene glycol 8000), and binder (polyvinyl butyral 98). The slurry exhibits pseudoplastic behavior, which is drastically affected by a minute change in powder content. These changes in the flow properties were traced in terms of shear dependence (m) and fractal dimension (df) of aggregates, along with the trend of growth in aggregate size (R) and its volume fraction (Φa) in the presence of different additives. These results suggest that the GDC particles tend to form large, rigid aggregates, which show appearance of yield stress even at Φ>0.06. Furthermore, the addition of polymeric chains in the form of additives causes the steric stabilization of aggregates and formation of their 3-D network structure, which suppresses the sedimentation velocity to zero and provides crack-free and homogeneous green tape.
  1. Hennings U, Reimert R, Appl. Catal. B: Environ., 70, 498 (2007)
  2. Chen CY, Liu CL, Ceram. Int., 37, 2353 (2011)
  3. Arabac A, Öksüzömer MF, Ceram. Int., 38, 6509 (2012)
  4. He L, Su Y, Lanhong J, Shi S, J. Rare Earths, 33, 791 (2015)
  5. Son C, Bhardwaj A, Hong J, Kim JW, Moon HS, Noh HS, Song SJ, J. Ceram. Process. Res., 18, 858 (2017)
  6. Nazir A, Le HTT, Min CW, Kasbe A, Kim J, Jin CS, Park CJ, Nanoscale, 12, 1629 (2020)
  7. Mathur L, Kim IH, Bhardwaj A, Singh B, Park JY, Song SJ, Compos. Part B Eng., 202, 108405 (2020)
  8. Mathur L, Kumar A, Kim IH, Bae H, Park JY, Song SJ, J. Power Sources, 493, 229696 (2021)
  9. Rahaman MN, Ceramic processing and sintering, CRC Press, Boca Raton (2003).
  10. Lee H, Koo S, Korea-Aust. Rheol. J., 28, 267 (2016)
  11. Kim D, Koo S, Korea-Aust. Rheol. J., 30, 67 (2018)
  12. Lindqvist K, Lidén E, J. European Ceram. Soc., 17, 359 (1997)
  13. Corbin SF, Apté PS, J. Am. Ceram. Soc., 82, 1693 (1999)
  14. Sarikaya A, Dogan F, Ceram. Int., 39, 403 (2013)
  15. Moon H, Kim SD, Hyun SH, Kim HS, Int. J. Hydrog. Energy, 33, 1758 (2008)
  16. Ramanathan S, Krishnakumar KP, De PK, Banerjee S, J. Mater. Sci., 39, 3339 (2004)
  17. Seol J, Young M, Jeong E, Moon J, Jin H, Solid State Ion., 42, 4546 (2016)
  18. Schmidt CG, Hansen KK, Andersen KB, Fu Z, Roosen A, Kaiser A, J. European Ceram. Soc., 36, 645 (2016)
  19. Ren L, Zeng PY, Dongliang J, J. Am. Ceram. Soc., 90, 3001 (2007)
  20. Ren L, Zeng YP, Jiang D, Solid State Sci., 12, 138 (2010)
  21. Das N, Maiti HS, J. Membr. Sci., 140, 205 (1998)
  22. Das N, Bandyopadhyay S, Chattopadhyay D, Maiti HS, J. Mater. Sci., 31, 5221 (1996)
  23. Das N, Maiti HS, J. Phys. Chem. Solids, 70, 1395 (2009)
  24. Hotza D, Greil P, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 202, 206 (1995)
  25. Fleer GJ, Lyklema J, J. Colloid Interface Sci., 46, 1 (1974)
  26. Zhang JX, Jiang DL, Tan SH, Gui LH, Ruan ML, J. Mater. Res., 17, 2019 (2002)
  27. Wang J, Gao L, Ceram. Int., 26, 187 (2000)
  28. Luo LH, Tok AIY, Boey FYC, Rengong Jingti Xuebao/Journal Synth. Cryst., 37, 188 (2006)
  29. Chartier T, Bruneau A, J. European Ceram. Soc., 12, 243 (1993)
  30. Meier LP, Urech L, Gauckler LJ, J. European Ceram. Soc., 24, 3753 (2004)
  31. Lee B, Koo S, Powder Technol., 266, 16 (2014)
  32. Cho J, Koo S, J. Ind. Eng. Chem., 27, 218 (2015)
  33. Hong J, Balamurugan C, Im HN, Jeon SY, Yoo YS, Song SJ, J. Electrochem. Soc., 165, F132 (2018)
  34. Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959)
  35. Casson N, Rheology of disperse systems, New York, NY (1959).
  36. Smith TL, Bruce CA, J. Colloid Interface Sci., 72, 13 (1979)
  37. Potanin AA, J. Colloid Interface Sci., 157, 399 (1993)
  38. Quemada D, Rheol. Acta, 16, 82 (1977)
  39. Willenbacher N, Georgieva K, Prod. Des. Eng. Formul. Gels Pastes, 1 (2013)
  40. Galindo-Rosales FJ, Rubio-Hernández FJ, Velázquez-Navarro JF, Rheol. Acta, 48, 699 (2009)
  41. Raghavan SR, Khan SA, J. Colloid Interface Sci., 185, 57 (1997)
  42. Medowski GO, Sutch RD, Doctor Blade Process in F.F.Y., 9th ed., Ceramic fabrication processes, Acadamic Press, New York, NY (1976).
  43. Nies CW, Messing GL, J. Am. Ceram. Soc., 67, 301 (1984)
  44. Jeon J, Koo S, J. Magn. Magn. Mater., 324, 424 (2012)
  45. Koo S, J. Ind. Eng. Chem., 14, 679 (2008)