Clean Technology, Vol.28, No.3, 232-237, September, 2022
루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구
Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid
E-mail:
초록
해조류 바이오매스 중 갈조류의 주요 구성 성분인 알긴산은 다양한 산업에서 널리 사용되어지며, 촉매적 저분자화를 통해 당, 당알코올, 퓨란계, 그리고 유기산과 같은 고부가가치 화합물로 전환할 수 있다. 본 연구에서는 루테늄 담지 활성탄과 마그네시아를 혼합하여 알긴산 저분자화 반응에 적용하고자 하였다. 이러한 불균일계 촉매 시스템은 생성물에 대한 분리가 용이하 고 정제 과정의 간소화가 장점으로 작용한다. 반응 결과, 탄소 수 5개 이하의 저분자량 알코올 및 유기산이 생성되었으며, 최 적의 반응 조건 탐색을 통해 최종적으로 1 wt% 알긴산 수용액 30 mL, 루테늄 담지 활성탄 100 mg, 마그네시아 100 mg, 반응 온도 210 ℃, 반응 시간 1 h의 반응 조건에서 29.8%의 알코올에 대한 탄소 수율과 43.8%의 알코올 포함 액상 생성물에 대한 총 탄소 수율을 확보하였다.
Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.
- Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
- Song M, Pham HD, Seon J, Woo HC, Renew. Sust. Energ. Rev., 50, 782 (2015)
- Feng S, Kang K, Salaudeen S, Ahmadi A, He QS, Hu Y, Ind. Eng. Chem. Res., 61(3), 1232 (2022)
- Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182 (2013)
- Jeon W, Ban C, Park G, Yu TK, Suh JY, Woo HC, Kim DH, J. Mol. Catal. A-Chem., 399, 106 (2015)
- Ban C, Jeon W, Park G, Woo HC, Kim DH, Chem. Cat. Chem., 9(2), 329 (2017)
- Jeon W, Ban C, Park G, Woo HC, Kim DH, Catal. Sci. Technol., 6(4), 1146 (2016)
- Jeon W, Ban C, Kim JE, Woo HC, Kim DH, J. Mol. Catal. A-Chem., 423, 264 (2016)
- Ban C, Jeon W, Woo HC, Kim DH, Chem. Sus. Chem., 10(24), 4891 (2017)
- Yang S, Kim H, Kim DH, React. Chem. Eng., 5(9), 1783 (2020)
- Yang L, Su J, Carl S, Lynam JG, Yang X, Lin H, Appl. Catal. B: Environ., 162, 149 (2015)
- Hausoul PJ, Negahdar L, Schute K, Palkovits R, Chem. Sus. Chem, 8(19), 3323 (2015)