화학공학소재연구정보센터
Clean Technology, Vol.28, No.3, 232-237, September, 2022
루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구
Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid
E-mail:
초록
해조류 바이오매스 중 갈조류의 주요 구성 성분인 알긴산은 다양한 산업에서 널리 사용되어지며, 촉매적 저분자화를 통해 당, 당알코올, 퓨란계, 그리고 유기산과 같은 고부가가치 화합물로 전환할 수 있다. 본 연구에서는 루테늄 담지 활성탄과 마그네시아를 혼합하여 알긴산 저분자화 반응에 적용하고자 하였다. 이러한 불균일계 촉매 시스템은 생성물에 대한 분리가 용이하 고 정제 과정의 간소화가 장점으로 작용한다. 반응 결과, 탄소 수 5개 이하의 저분자량 알코올 및 유기산이 생성되었으며, 최 적의 반응 조건 탐색을 통해 최종적으로 1 wt% 알긴산 수용액 30 mL, 루테늄 담지 활성탄 100 mg, 마그네시아 100 mg, 반응 온도 210 ℃, 반응 시간 1 h의 반응 조건에서 29.8%의 알코올에 대한 탄소 수율과 43.8%의 알코올 포함 액상 생성물에 대한 총 탄소 수율을 확보하였다.
Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  2. Song M, Pham HD, Seon J, Woo HC, Renew. Sust. Energ. Rev., 50, 782 (2015)
  3. Feng S, Kang K, Salaudeen S, Ahmadi A, He QS, Hu Y, Ind. Eng. Chem. Res., 61(3), 1232 (2022)
  4. Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182 (2013)
  5. Jeon W, Ban C, Park G, Yu TK, Suh JY, Woo HC, Kim DH, J. Mol. Catal. A-Chem., 399, 106 (2015)
  6. Ban C, Jeon W, Park G, Woo HC, Kim DH, Chem. Cat. Chem., 9(2), 329 (2017)
  7. Jeon W, Ban C, Park G, Woo HC, Kim DH, Catal. Sci. Technol., 6(4), 1146 (2016)
  8. Jeon W, Ban C, Kim JE, Woo HC, Kim DH, J. Mol. Catal. A-Chem., 423, 264 (2016)
  9. Ban C, Jeon W, Woo HC, Kim DH, Chem. Sus. Chem., 10(24), 4891 (2017)
  10. Yang S, Kim H, Kim DH, React. Chem. Eng., 5(9), 1783 (2020)
  11. Yang L, Su J, Carl S, Lynam JG, Yang X, Lin H, Appl. Catal. B: Environ., 162, 149 (2015)
  12. Hausoul PJ, Negahdar L, Schute K, Palkovits R, Chem. Sus. Chem, 8(19), 3323 (2015)