화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.12, 3315-3322, December, 2022
Performance evaluation of zero-gap vanadium redox flow battery using composite electrode consisting of graphite and buckypaper
E-mail:
A composite electrode consisting of graphite felt and buckypaper (GF-BP) was developed. GF-BP is used for fabricating a zero-gap structure for all-vanadium redox flow battery (VRFB), which minimizes the distance between two electrodes. With this zero-gap structure, performance of VRFBs is improved, while its flexible design becomes possible. GF and BP are used as base and reinforced materials to combine the proper porous structure of GF and the excellent redox reactivity of vanadium ions promoted by BP. The properties of GF-BP electrode and its applicability to VRFB were evaluated electrochemically and spectroscopically. As a result, its total pore volume and double layer capacitance (0.200 cm3 g-1, 1,547.95mF g-1) are higher than those of pristine GF electrode (0.040 cm3 g-1, 94.59 mF g-1). When the optimized GF-BP electrode and zero-gap structure are adopted, performance of the zero-gap VRFB using the optimized GF-BP electrode is excellent with energy efficiency (EE) of 60% and discharge capacity of 14.6 Ah L-1 at 160 mA cm-2, while the EE (67.8%) is 20% better than that using pristine GF electrode (72.4%) at 120mA cm-2. The significant increase in actual active sites of the optimized GF-BP electrode is the main reason for the performance enhancement of the zero-gap VRFB using this.
  1. Hyun K, Kim S, Kwon Y, Korean J. Chem. Eng., 38, 2347 (2021)
  2. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
  3. Basit MA, Dilshad S, Badar R, ur Rehman SMS, Int. J. Energy Res., 44, 4132 (2020)
  4. Shin M, Noh C, Chung Y, Kim DH, Kwon Y, Appl. Surf. Sci., 550, 148977 (2021)
  5. Mahmoud M, Ramadan M, Olabi AG, Pullen K, Naher S, Energy Conv. Manag., 210, 112670 (2020)
  6. Li Y, Fu Q, Qin H, Yang K, Lv J, Zhang Q, Zhang H, Liu F, Chen X, Wang M, Korean J. Chem. Eng., 38, 2113 (2021)
  7. Shin M, Oh S, Jeong H, Noh C, Chung Y, Han JW, Kwon Y, Int. J. Energy Res., 46, 8175 (2022)
  8. Lim E, Chun J, Jo C, Hwang J, Korean J. Chem. Eng., 38, 227 (2021)
  9. Oh HH, Joo J, Korean J. Chem. Eng., 38, 1052 (2021)
  10. Kim SH, Choi YR, Cho YJ, Rhyu SY, Kang SW, Korean J. Chem. Eng., 38, 1715 (2021)
  11. Jang N, Kim W, Lee D, Yoon G, Yang J, Cho I, Jeon H, Koo J, Korean J. Chem. Eng., 38, 2397 (2021)
  12. Lee J, Lee Y, Kim S, Kwon EE, Lin KYA, Korean J. Chem. Eng., 38, 1079 (2021)
  13. Oh S, Noh C, Shin M, Kwon Y, Int. J. Energy Res., 46, 8803 (2022)
  14. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
  15. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388 (2018)
  16. Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH, Korean J. Chem. Eng., 32, 1554 (2015)
  17. Noh C, Serhiichuk D, Malikah N, Kwon Y, Henkensmeier D, Chem. Eng. J., 407, 126574 (2021)
  18. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
  19. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438 (2019)
  20. Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732 (2019)
  21. Shi Y, Eze C, Xiong B, He W, Zhang H, Lim TM, Ukil A, Zhao J, Appl. Energy, 238, 202 (2019)
  22. Noack J, Roznyatovskaya N, Herr T, Fischer P, Angew. Chem.-Int. Edit., 54, 9776 (2015)
  23. Zhong S, Skyllas-Kazacos M, J. Power Sources, 39, 1 (1992)
  24. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM, J. Power Sources, 206, 450 (2012)
  25. O’Connor H, Bailey JJ, Istrate OM, Klusener PAA, Watson R, Glover S, Iacoviello F, Brett DJL, Shearing PR, Nockemann P, Sustain. Energy Fuels, 6, 1529 (2022)
  26. Parra-Puerto A, Rubio-Garcia J, Markiewicz M, Zheng Z, Kucernak A, ChemElectroChem, 9, e2021016 (2022)
  27. Noh C, Shin M, Kwon Y, J. Power Sources, 520, 230810 (2022)
  28. Shin M, Noh C, Chung Y, Kwon Y, Chem. Eng. J., 398, 125631 (2020)
  29. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26 (2018)
  30. Phillips R, Dunnill CW, RSC Adv., 6, 100643 (2016)
  31. Abbas S, Mehboob S, Shin HJ, Han OH, Ha HY, Chem. Eng. J., 378, 122190 (2019)
  32. Hnát J, Kodým R, Denk K, Paidar M, Žitka J, Bouzek K, Chem. Ing. Tech., 91, 821 (2019)
  33. Lee WH, Lim C, Lee SY, Chae KH, Choi CH, Lee U, Min BK, Hwang YJ, Oh HS, Nano Energy, 84, 105859 (2021)
  34. Zeng L, Ren Y, Wei L, Fan X, Zhao T, Energy Technol., 8, 2000592 (2020)
  35. Xu Z, Xiao W, Zhang K, Zhang D, Wei H, Zhang X, Zhang Z, Pu N, Liu J, Yan C, J. Power Sources, 450, 227686 (2020)
  36. Wei L, Xiong C, Jiang HR, Fan XZ, Zhao TS, Energy Storage Mater., 25, 885 (2020)
  37. Bunte C, Hussein L, Urban GA, J. Power Sources, 247, 579 (2014)
  38. Reid RC, Minteer SD, Gale BK, Biosens. Bioelectron., 68, 142 (2015)
  39. MacVittie K, Conlon T, Katz E, Bioelectrochemistry, 106, 28 (2015)
  40. Mustafa I, Lopez I, Younes H, Susantyoko RA, Al-Rub RA, Almheiri S, Electrochim. Acta, 230, 222 (2017)
  41. Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J, ACS Nano, 14, 9282 (2020)
  42. Chu K, Jia C, Li W, Wang P, Phys. Status Solidi A-Appl. Res., 210, 594 (2013)
  43. Wei Y, Luo LM, Liu HB, Zan X, Song JP, Xu Q, Zhu XY, Wu YC, Mater. Des., 191, 108635 (2020)
  44. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG, Electrochim. Acta, 52, 7377 (2007)
  45. Han T, Xiao Y, Tong M, Huang H, Liu D, Wang L, Zhong C, Chem. Eng. J., 275, 134 (2015)
  46. Shin M, Noh C, Kwon Y, Int. J. Energy Res., 46, 6866 (2022)
  47. Jung M, Lee W, Noh C, Konovalova A, Yi GS, Kim S, Kwon Y, Henkensmeier D, J. Membr. Sci., 580, 110 (2019)
  48. Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063 (2019)
  49. Lee W, Park G, Schröder D, Kwon Y, Korean J. Chem. Eng., 38, 1 (2022)
  50. Mazur P, Mrlik J, Pocedic J, Vrana J, Dundalek J, Kosek J, Bystron T, J. Power Sources, 414, 354 (2019)