화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.32, No.8, 333-338, August, 2022
High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector
E-mail:
In this work, we developed silver nanowires and a silicon based Schottky junction and demonstrated ultrafast broadband photosensing behavior. The current device had a response speed that was ultrafast, with a rising time of 36 μs and a falling time of 382 μs, and it had a high level of repeatability across a broad spectrum of wavelengths (λ = 365 to 940 nm). Furthermore, it exhibited excellent responsivity of 60 mA/W and a significant detectivity of 3.5 × 1012 Jones at a λ = 940 nm with an intensity of 0.2 mW cm-2 under zero bias operating voltage, which reflects a boost of 50%, by using the AC PV effect. This excellent broadband performance was caused by the photon-induced alternative photocurrent effect, which changed the way the optoelectronics work. This innovative approach will open a second door to the potential design of a broadband ultrafast device for use in cutting-edge optoelectronics.
  1. Kumar M, Lim J, Seo H, Nano Energy, 89, 106471 (2021)
  2. Kumar M, Singh R, Nandy S, J. Appl. Phys., 120, 015302 (2016)
  3. Kim J, Lee HC, Kim KH, Hwang MS, Park JS, Lee JM, So JP, Choi JH, Kwon SH, Barrelet CJ, Park HG, Nat. Nanotechnol., 12, 963 (2017)
  4. Kumar M, Seo H, Adv. Mater., 34, 20210688 (2022)
  5. You D, Xu C, Zhang W, Zhao J, Qin F, Shi Z, Nano Energy, 62, 310 (2019)
  6. Zheng L, Hu K, Teng F, Fang X, Small, 13, 1602448 (2017)
  7. Ma N, Zhang K, Yang Y, Adv. Mater., 29, 1703694 (2017)
  8. Kumar M, Seo H, Adv. Opt. Mater., 9, 20210137 (2021)
  9. Sun L, Zhu L, Zhang C, Chen W, Wang Z, Nano Energy, 83, 105855 (2021)
  10. Bhaskar UK, Banerjee N, Abdollahi A, Wang Z, Schlom DG, Rijnders G, Catalan GA, Nat. Nanotechnol., 11, 263 (2016)
  11. Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller DAB, Psaltis D, Nat. Res., 3, 39 (2020)
  12. Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G, Raghavan S, Ghosh A, Nat. Nanotechnol., 8, 826 (2013)
  13. Chen H, Liu K, Hu L, Mater. Today, 18, 493 (2015)
  14. Kumar M, Som T, Kim J, Adv. Mater., 31, 20190309 (2019)
  15. Chen A, Zhang W, Dedon LR, Chen D, Khatkhatay F, MacManus-Driscoll JL, Wang H, Yarotski D, Chen J, Adv. Funct. Mater., 30, 2000664 (2020)
  16. Kumar M, Choi H, Lim J, Park JY, Kim S, Seo H, Nano Energy, 77, 105240 (2020)
  17. Wang L, Liu S, Feng X, Zhang C, Zhu L, Zhai J, Qin Y, Wang ZL, Nat. Nanotechnol., 15, 661 (2020)
  18. Dai Y, Wang X, Peng W, Xu C, Wu C, Dong K, Liu R, Wang ZL, Adv. Mater., 30, 1705893 (2018)
  19. Zou H, Dai G, Wang AC, Li X, Zhang SL, Ding W, Zhang L, Zhang Y, Wang ZL, Adv. Mater., 32, 1907249 (2020)
  20. Kumar M, Patel M, Kim HS, Kim J, Yi J, ACS Appl. Mater. Interfaces, 9, 38824 (2017)
  21. Abbas S, Kumar M, Kim HS, Kim J, Lee JH, ACS Appl. Mater. Interfaces, 10, 14292 (2018)
  22. Hwang J, Song MH, Park B, Nishimura S, Toyooka T, Wu JW, Takanishi Y, Ishikawa K, Takezoe H, Nat. Mater., 4, 383 (2005)
  23. Kumar M, Lim J, Park JY, Seo H, Small Methods, 5, 2100342 (2021)
  24. Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X, Adv. Funct. Mater., 27, 1700264 (2017)
  25. Zhang Y, Chen J, Zhu L, Wang ZL, Nano Lett., 21, 8808 (2021)