화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 483-498, October, 2022
Modelling the minimally fluidized state under reduced pressure
E-mail:
Several aspects of numerically modelling a minimally fluidized gas–solid system have been investigated in this work. The numerical results show that voidage and the resulting pressure drop are not a function of the fluidizing cycle. More interestingly, the pressure drop was not impacted by introducing the lateral axis of gas and solid flow in the 3D models. Under a reduced pressure environment, none of the wellknown drag models could capture the effect of the slip flow. A relatively new but not well-known slip flow drag model showed the ability to capture the impact of the slip flow regime. However, improvements in its overall accuracy are desirable. To this extent, the Ergun pressure drop equation was modified to introduce the effect of the slip flow regime. The losses in the slip flow regime were captured by deriving a new correlation using experimental work that predicted a linear relationship between the laminar coefficient and the Knudsen number. The modified Ergun equation showed notable improvement in its pressure drop accuracy. Furthermore, the modified Ergun equation was implemented as a modified Gidaspow drag model. It showed better accuracy in predicting pressure drop and minimum fluidization velocity at reduced pressure for various alumina particle sizes.
  1. Kozanoglu BU, Vilchez JA, Casal J, Arnaldos J, Can. J. Chem. Eng., 80(3), 376 (2002)
  2. Wraith AE, Harris R, Miner. Eng., 5(9), 993 (1992)
  3. Ruvalcaba JRR, Caussat B, Hemati M, Couderc JP, Chem. Eng. J., 73(1), 61 (1999)
  4. Ergun S, Chem. Eng. Prog., 48, 89 (1952)
  5. Kunii D, Levenspiel O, Fluidization engineering. Elsevier, 2013.
  6. Nemec D, Levec J, Chem. Eng. Sci., 60(24), 6947 (2005)
  7. Koekemoer A, Luckos A, Fuel, 158, 232 (2015)
  8. Ozahi E, Gundogdu MY, Carpinlioglu MO, Adv. Powder Technol., 19(4), 369 (2008)
  9. Olatunde G, Fasina O, Kona Powder Part. J., 36, 232 (2019)
  10. Wen CY, Yu YH, Chem. Eng. Prog., 62, 100 (1966)
  11. Bourgeois P, Grenier P, Can. J. Chem. Eng., 46(5), 325 (1968)
  12. Richardson J, Jeronimo M, Chem. Eng. Sci., 34, 1419 (1979)
  13. Saxena S, Vogel G, ‘‘THE MEASUREMENT OF INCIPIENT FLUIDISATION VELOCITIES IN A BED OF COARSE DOLOMITE AT TEMPERATURE AND PRESSURE,” 1977.
  14. Thonglimp V, Hiquily N, Laguérie C, Powder Technol., 38(3), 233 (1984)
  15. Geldart D, Powder Technol., 7(5), 285 (1973)
  16. Kumar A, Hodgson P, Gao W, Das S, Fabijanic D, Powder Technol., 254, 137 (2014)
  17. Pietsch W, ‘‘Industrial Applications of Size Enlargement by Agglomeration,” in Agglomeration Set, pp. 59-478.
  18. Llop MF, Madrid F, Arnaldos J, Casal J, Chem. Eng. Sci., 51(23), 5149 (1996)
  19. Zarekar S, Bück A, Jacob M, Tsotsas E, Chem. Eng. J., 372, 1134 (2019)
  20. Li J, Kuipers JAM, Powder Technol., 127(2), 173 (2002)
  21. Sidorenko I, Rhodes MJ, Powder Technol., 141(1), 137 (2004)
  22. Llop MF, Casal J, Arnaldos J, Powder Technol., 107(3), 212 (2000)
  23. Olowson PA, Almstedt AE, Chem. Eng. Sci., 45(7), 1733 (1990)
  24. Kawamura S, Suezawa Y, Mechanism of gas flow in a fluidized bed at low pressure, 25(7), 524 (1961)
  25. Kusakabe K, Kuriyama T, Morooka S, Powder Technol., 58(2), 125 (1989)
  26. Roth A, Vacuum technology. North-Holland, Amsterdam: Elsevier, 1976.
  27. Burke SP, Plummer WB, Ind. Eng. Chem., 20(11), 1196 (1928)
  28. Zarekar S, Bück A, Jacob M, Tsotsas E, Powder Technol., 287, 169 (2016)
  29. Kumar A, Hodgson P, Gao W, Fabijanic D, Das S, in: Drag models comparison by single injection in vacuum fluidised beds, ICMF, pp. 1–6, 2013
  30. Kuipers JAM, Prins W, Swaaij WPMV, AIChE J., 38(7), 1079 (1992)
  31. Kumar A, Das S, Fabijanic D, Gao W, Hodgson P, Chem. Eng. Sci., 101, 56 (2013)
  32. Kumar A, Hodgson P, Fabijanic D, Gao W, Adv. Powder Technol., 23(4), 485 (2012)
  33. Kumari A, Hodgson P, Gao W, Fabijanic D, Das S, in: Drag models comparison by single injection in vacuum fluidised beds, ICMF, pp. 1–6, 2013
  34. Kumar A, ‘‘Investigations into hydrodynamics and heat transfer in vacuum fluidised beds,” Deakin University, 2014.
  35. Wang Y, Zou Z, Li H, Zhu Q, Particuology, 15, 151 (2014)
  36. Gidaspow D, Bezburuah R, Ding J, ‘‘Hydrodynamics of circulating fluidized beds: Kinetic theory approach,” United States, 1991
  37. Wang L, Yuan W, Duan S, Sun J, Xu L, Heat Mass Transf., 55(4), 1195 (2019)
  38. Gao W, Kong L, Hodgson P, Int. J. Mater. Prod. Technol., 24(1-4), 319 (2005)
  39. Gao W, Long JM, Kong L, Hodgson PD, ISIJ Int., 44(5), 869 (2004)
  40. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N, J. Fluid Mech., 140, 223 (1984)
  41. Syamlal M, Rogers W, OBrien TJ, ‘‘MFIX documentation theory guide,” USDOE Morgantown Energy Technology Center, WV (United States)1993.
  42. Karimipour S, Pugsley T, Powder Technol., 220, 63 (2012)
  43. van Wachem BGM, ‘‘Derivation, Implementation, and Validation of Computer Simulation Models for Gas-Solid Fluidized Beds,” None (EN), 2000.
  44. Passalacqua A, Marmo L, Chem. Eng. Sci., 64(12), 2795 (2009)
  45. Huilin L, Yurong H, Wentie L, Ding J, Gidaspow D, Bouillard J, Chem. Eng. Sci., 59(4), 865 (2004)
  46. Shuyan W, Xiang LI, Huilin LU, Long YU, Dan S, Yurong HE, et al., Powder Technol., 196(2), 184 (2009)
  47. Patil DJ, van Sint Annaland M, Kuipers JAM, Chem. Eng. Sci., 60(1), 57 (2005)
  48. Srivastava A, Sundaresan S, Powder Technol., 129(1), 72 (2003)
  49. Asegehegn TW, Schreiber M, Krautz HJ, Powder Technol., 219, 9 (2012)
  50. Behjat Y, Shahhosseini S, Hashemabadi SH, Int. Commun. Heat Mass Transf., 35(3), 357 (2008)
  51. Yang S, Li H, Zhu Q, Chem. Eng. J., 259, 338 (2015)
  52. Caicedo GR, Ruiz MG, Marqués JJP, Soler JG, Chem. Eng. Process., 41(9), 761 (2002)
  53. Clarke KL, Pugsley T, Hill GA, Chem. Eng. Sci., 60(24), 6909 (2005)
  54. Kumar V, ‘‘Hydrodynamics and Heat transfer studies in Vacuum fluidisation,” PhD, Deakin University, 2019.
  55. Barletta M, J. Mater. Process. Technol., 173(2), 157 (2006)
  56. Shaul S, Rabinovich E, Kalman H, Powder Technol., 228, 264 (2012)
  57. Takafumi M, Hidehiro K, Masayuki H, Powder Technol., 89(3), 231 (1996)
  58. Brillouin M, ‘‘Leçons sur la viscosité des liquides et des gaz. Première partie : généralités, viscosité des liquides,” Gauthier-Villars (Paris)1907
  59. M.H. Pahl Über die Kennzeichnung diskret disperser Systeme und die systematische Variation der Einflußgrößen zur Ermittlung eines allgemeingültigeren Widerstandsgesetzes der Porenströmung 1975 na.
  60. Casal J, Lucas A, Arnaldos J, Chem. Eng. J., 30(3), 155 (1985)
  61. Rapp BE, ‘‘Chapter 9 - Fluids,” in Microfluidics: Modelling, Mechanics and Mathematics, Rapp BE, Ed. Oxford: Elsevier, pp. 243-263, 2017
  62. Hilsenrath J, and U. S. N. B. o. Standards, Tables of Thermal Properties of Gases: Comprising Tables of Thermodynamic and Transport Properties of Air, Argon, 1955.
  63. Çengel YA, Boles MA, Kanoglu M, Thermodynamics : An Engineering Approach (SI Units). Singapore, SINGAPORE: McGraw-Hill Education (Asia), 2019.
  64. Reuge N, Cadoret L, Coufort-Saudejaud C, Pannala S, Syamlal M, Caussat B, Chem. Eng. Sci., 63(22), 5540 (2008)
  65. Gao W, Kong L, Hodgson PJAH, ‘‘Fluidized-bed heat treating equipment,” pp. 233-241, 2014.
  66. Felipe CAS, Rocha SCS, Powder Technol., 174(3), 104 (2007)