화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 391-401, October, 2022
Simple scalable approach to advanced membrane module design and hydrogen separation performance using twelve replaceable palladium-coated Al2O3 hollow fibre membranes
E-mail:
A phase-inversion approach was used to manufacture Al2O3 hollow fibre supports, which were then sintered at 1723 K. The electroless plating technique is developed to prepare palladium-coated Al2O3 hollow fibre membranes for hydrogen separation. Three different scaling-up configurations were produced and tested: single membrane, membrane unit obtained by assembling three membranes, and advanced membrane module obtained by assembling twelve replaceable membranes. The hydrogen flux was investigated under vacuum and without vacuum using a feed gas of pure H2 (100%) and a binary feed gas mixture of H2 (80%) and CO2 (20%) at different feed gas pressures (100–800 kPa), feed gas rate (0.2–6. 0 L min-1), and temperature (673–723 K). The hydrogen flux increases from 0.2162 mol m-2 s-1 (feed gas pressure = 600 kPa, feed gas rate = 0.2 L min-1) to 0.4487 mol m-2 s-1 (feed gas pressure = 800 kPa, feed gas rate = 6.0 L min-1) under the binary gas mixture at 723 K by switching from a single to the advanced membrane module, while the hydrogen purity remains above 97.5% throughout the experiment. Some aspects about the scalability of palladium-coated Al2O3 hollow fibre membranes for hydrogen separation are discussed.
  1. Advanced Materials for Membrane Separations, Acs Symposium Series, 876, 1–21, (2004)
  2. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S, Chem. Eng. Process., 121, 24 (2017)
  3. Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S, J. Ind. Eng. Chem., 85, 34 (2020)
  4. Liang D, Huang J, Zhang H, Fu H, Zhang Y, Chen H, Ceram. Int., 47, 10464 (2021)
  5. Liguori S, Kian K, Buggy N, Anzelmo BH, Wilcox J, Prog. Energy Combust. Sci., 80, 100851 (2020)
  6. David E, Kopac J, Int. J. Hydrog. Energy, 36, 4498 (2011)
  7. Alique D, Martinez-Diaz D, Sanz R, Calles JA, Membranes, 8, 5 (2018)
  8. Petriev I, Pushankina P, Bolotin S, Lutsenko I, Kukueva E, Baryshev M, J. Membr. Sci., 620, 118894 (2021)
  9. Liang X, Li X, Nagaumi H, Guo J, Gallucci F, van Sint Annaland M, et al., J. Membr. Sci., 601, 117922 (2020)
  10. Pati S, Ashok J, Dewangan N, Chen T, Kawi S, J. Membr. Sci., 595, 117496 (2020)
  11. Kiadehi AD, Taghizadeh M, Rami MD, J. Ind. Eng. Chem., 81, 206 (2020)
  12. Ockwig NW, Nenoff TM, Chem. Rev., 107, 4078 (2007)
  13. Chen W, Hu X, Wang R, Huang Y, Sep. Purif. Technol., 72, 92 (2010)
  14. Hatim MDI, Tan X, Wu Z, Li K, Chem. Eng. Sci., 66, 1150 (2011)
  15. Volpe M, Inguanta R, Piazza S, Sunseri C, Surf. Coat. Technol., 200, 5800 (2006)
  16. Yeung KL, Christiansen SC, Varma A, J. Membr. Sci., 159, 107 (1999)
  17. Souleimanova RS, Mukasyan A, Varma A, Chem. Eng. Sci., 54, 3369 (1999)
  18. Chen WH, Lin CH, Lin YL, J. Membr. Sci., 472, 45 (2014)
  19. Ryi SK, Park JS, Kim SH, Cho SH, Hwang KR, Kim DW, et al., J. Membr. Sci., 297, 217 (2007)
  20. Bruni G, Cordiner S, Tosti S, Int. J. Hydrog. Energy, 41, 20198 (2016)
  21. Borgognoni F, Tosti S, Vadrucci M, Santucci A, Int. J. Hydrog. Energy, 36, 7550 (2011)
  22. Sun GB, Hidajat K, Kawi S, J. Membr. Sci., 284, 110 (2006)
  23. Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, et al., Int. J. Hydrog. Energy, 40, 3506 (2015)
  24. Wang WP, Thomas S, Zhang XL, Pan XL, Yang WS, Xiong GX, Sep. Purif. Technol., 52, 177 (2006)
  25. Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19 (2016)
  26. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
  27. Magnone E, Lee SH, Park JH, Mater. Lett., 272, 127811 (2020)
  28. Cheng YS, Yeung KL, J. Membr. Sci., 182, 195 (2001)
  29. Wang JY, Chi YH, Huang JH, Materials, 14, 4894 (2021)
  30. Gao H, Lin JYS, Li Y, Zhang B, J. Membr. Sci., 265, 142 (2005)
  31. Lu H, Zhu L, Wang W, Yang W, Tong J, Int. J. Hydrog. Energy, 40, 3548 (2015)
  32. Nair BKR, Choi J, Harold MP, J. Membr. Sci., 288, 67 (2007)
  33. Alique D, Imperatore M, Sanz R, Calles JA, Baschetti MG, Int. J. Hydrog. Energy, 41, 19430 (2016)
  34. Zhang X, Xiong G, Yang W, J. Membr. Sci., 314, 226 (2008)
  35. Nair BKR, Harold MP, J. Membr. Sci., 290, 182 (2007)
  36. Jiansheng L, Lianjun W, Yanxia H, Xiaodong L, Xiuyun S, J. Membr. Sci., 256, 1 (2005)
  37. de M Silva CL, Ribeiro SRFL, Terra NM, Cardoso VL, Reis MHM, Int. J. Hydrog. Energy, 45, 22990 (2020)
  38. Lee M, Wang B, Li K, J. Membr. Sci., 503, 48 (2016)
  39. Gbenedio E, Wu Z, Hatim I, Kingsbury BFK, Li K, Catal. Today, 156(3-4), 93 (2010)
  40. Saleh M, Hofer TS, Dalton Trans., 46, 9630 (2017)
  41. Paglieri SN, Way JD, Sep. Purif. Methods, 31, 1 (2002)
  42. Paglieri SN, Foo KY, Way JD, Collins JP, Harper-Nixon DL, Ind. Eng. Chem. Res., 38, 1925 (1999)
  43. Okazaki J, Ikeda T, Tanaka DAP, Suzuki TM, Mizukami F, J. Membr. Sci., 335, 126 (2009)
  44. Hu X, Huang Y, Shu S, Fan Y, Xu N, J. Power Sources, 181, 135 (2008)
  45. Terra NM, Lemos COT, da Silva FB, Cardoso VL, Reis MHM, Braz. J. Chem. Eng., 33, 567 (2016)
  46. Chen WH, Lin SW, Chen CY, Chi YH, Lin YL, Int. J. Hydrog. Energy, 44, 14434 (2019)
  47. Collins JP, Way JD, Ind. Eng. Chem. Res., 32, 3006 (1993)
  48. Zhou S, Zou X, Sun F, Zhang F, Fan S, Zhao H, et al., J. Mater. Chem., 22, 10322 (2012)
  49. Chen Y, Liao Q, Li Z, Wang H, Wei Y, Feldhoff A, et al., AIChE J., 61, 1997 (2015)
  50. Li A, Liang W, Hughes R, J. Membr. Sci., 149, 259 (1998)
  51. Mori N, Nakamura T, Noda KI, Sakai I, Takahashi A, Ogawa N, et al., Ind. Eng. Chem. Res., 46, 1952 (2007)
  52. Nakajima T, Kume T, Ikeda Y, Shiraki M, Kurokawa H, Iseki T, et al., Int. J. Hydrog. Energy, 40, 11451 (2015)
  53. Ma R, Castro-Dominguez B, Dixon AG, Ma YH, J. Membr. Sci., 564, 887 (2018)
  54. El Hawa HWA, Lundin STB, Paglieri SN, Harale A, Way JD, J. Membr. Sci., 494, 113 (2015)