Journal of Industrial and Engineering Chemistry, Vol.114, 391-401, October, 2022
Simple scalable approach to advanced membrane module design and hydrogen separation performance using twelve replaceable palladium-coated Al2O3 hollow fibre membranes
E-mail:
A phase-inversion approach was used to manufacture Al2O3 hollow fibre supports, which were then sintered at 1723 K. The electroless plating technique is developed to prepare palladium-coated Al2O3 hollow fibre membranes for hydrogen separation. Three different scaling-up configurations were produced and tested: single membrane, membrane unit obtained by assembling three membranes, and advanced membrane module obtained by assembling twelve replaceable membranes. The hydrogen flux was investigated under vacuum and without vacuum using a feed gas of pure H2 (100%) and a binary feed gas mixture of H2 (80%) and CO2 (20%) at different feed gas pressures (100–800 kPa), feed gas rate (0.2–6. 0 L min-1), and temperature (673–723 K). The hydrogen flux increases from 0.2162 mol m-2 s-1 (feed gas pressure = 600 kPa, feed gas rate = 0.2 L min-1) to 0.4487 mol m-2 s-1 (feed gas pressure = 800 kPa, feed gas rate = 6.0 L min-1) under the binary gas mixture at 723 K by switching from a single to the advanced membrane module, while the hydrogen purity remains above 97.5% throughout the experiment. Some aspects about the scalability of palladium-coated Al2O3 hollow fibre membranes for hydrogen separation are discussed.
Keywords:Membrane module design;Hydrogen separation properties;Palladium coatings;Electroless plating process;Al2O3 hollow fibre supports
- Advanced Materials for Membrane Separations, Acs Symposium Series, 876, 1–21, (2004)
- Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S, Chem. Eng. Process., 121, 24 (2017)
- Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S, J. Ind. Eng. Chem., 85, 34 (2020)
- Liang D, Huang J, Zhang H, Fu H, Zhang Y, Chen H, Ceram. Int., 47, 10464 (2021)
- Liguori S, Kian K, Buggy N, Anzelmo BH, Wilcox J, Prog. Energy Combust. Sci., 80, 100851 (2020)
- David E, Kopac J, Int. J. Hydrog. Energy, 36, 4498 (2011)
- Alique D, Martinez-Diaz D, Sanz R, Calles JA, Membranes, 8, 5 (2018)
- Petriev I, Pushankina P, Bolotin S, Lutsenko I, Kukueva E, Baryshev M, J. Membr. Sci., 620, 118894 (2021)
- Liang X, Li X, Nagaumi H, Guo J, Gallucci F, van Sint Annaland M, et al., J. Membr. Sci., 601, 117922 (2020)
- Pati S, Ashok J, Dewangan N, Chen T, Kawi S, J. Membr. Sci., 595, 117496 (2020)
- Kiadehi AD, Taghizadeh M, Rami MD, J. Ind. Eng. Chem., 81, 206 (2020)
- Ockwig NW, Nenoff TM, Chem. Rev., 107, 4078 (2007)
- Chen W, Hu X, Wang R, Huang Y, Sep. Purif. Technol., 72, 92 (2010)
- Hatim MDI, Tan X, Wu Z, Li K, Chem. Eng. Sci., 66, 1150 (2011)
- Volpe M, Inguanta R, Piazza S, Sunseri C, Surf. Coat. Technol., 200, 5800 (2006)
- Yeung KL, Christiansen SC, Varma A, J. Membr. Sci., 159, 107 (1999)
- Souleimanova RS, Mukasyan A, Varma A, Chem. Eng. Sci., 54, 3369 (1999)
- Chen WH, Lin CH, Lin YL, J. Membr. Sci., 472, 45 (2014)
- Ryi SK, Park JS, Kim SH, Cho SH, Hwang KR, Kim DW, et al., J. Membr. Sci., 297, 217 (2007)
- Bruni G, Cordiner S, Tosti S, Int. J. Hydrog. Energy, 41, 20198 (2016)
- Borgognoni F, Tosti S, Vadrucci M, Santucci A, Int. J. Hydrog. Energy, 36, 7550 (2011)
- Sun GB, Hidajat K, Kawi S, J. Membr. Sci., 284, 110 (2006)
- Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, et al., Int. J. Hydrog. Energy, 40, 3506 (2015)
- Wang WP, Thomas S, Zhang XL, Pan XL, Yang WS, Xiong GX, Sep. Purif. Technol., 52, 177 (2006)
- Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19 (2016)
- Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
- Magnone E, Lee SH, Park JH, Mater. Lett., 272, 127811 (2020)
- Cheng YS, Yeung KL, J. Membr. Sci., 182, 195 (2001)
- Wang JY, Chi YH, Huang JH, Materials, 14, 4894 (2021)
- Gao H, Lin JYS, Li Y, Zhang B, J. Membr. Sci., 265, 142 (2005)
- Lu H, Zhu L, Wang W, Yang W, Tong J, Int. J. Hydrog. Energy, 40, 3548 (2015)
- Nair BKR, Choi J, Harold MP, J. Membr. Sci., 288, 67 (2007)
- Alique D, Imperatore M, Sanz R, Calles JA, Baschetti MG, Int. J. Hydrog. Energy, 41, 19430 (2016)
- Zhang X, Xiong G, Yang W, J. Membr. Sci., 314, 226 (2008)
- Nair BKR, Harold MP, J. Membr. Sci., 290, 182 (2007)
- Jiansheng L, Lianjun W, Yanxia H, Xiaodong L, Xiuyun S, J. Membr. Sci., 256, 1 (2005)
- de M Silva CL, Ribeiro SRFL, Terra NM, Cardoso VL, Reis MHM, Int. J. Hydrog. Energy, 45, 22990 (2020)
- Lee M, Wang B, Li K, J. Membr. Sci., 503, 48 (2016)
- Gbenedio E, Wu Z, Hatim I, Kingsbury BFK, Li K, Catal. Today, 156(3-4), 93 (2010)
- Saleh M, Hofer TS, Dalton Trans., 46, 9630 (2017)
- Paglieri SN, Way JD, Sep. Purif. Methods, 31, 1 (2002)
- Paglieri SN, Foo KY, Way JD, Collins JP, Harper-Nixon DL, Ind. Eng. Chem. Res., 38, 1925 (1999)
- Okazaki J, Ikeda T, Tanaka DAP, Suzuki TM, Mizukami F, J. Membr. Sci., 335, 126 (2009)
- Hu X, Huang Y, Shu S, Fan Y, Xu N, J. Power Sources, 181, 135 (2008)
- Terra NM, Lemos COT, da Silva FB, Cardoso VL, Reis MHM, Braz. J. Chem. Eng., 33, 567 (2016)
- Chen WH, Lin SW, Chen CY, Chi YH, Lin YL, Int. J. Hydrog. Energy, 44, 14434 (2019)
- Collins JP, Way JD, Ind. Eng. Chem. Res., 32, 3006 (1993)
- Zhou S, Zou X, Sun F, Zhang F, Fan S, Zhao H, et al., J. Mater. Chem., 22, 10322 (2012)
- Chen Y, Liao Q, Li Z, Wang H, Wei Y, Feldhoff A, et al., AIChE J., 61, 1997 (2015)
- Li A, Liang W, Hughes R, J. Membr. Sci., 149, 259 (1998)
- Mori N, Nakamura T, Noda KI, Sakai I, Takahashi A, Ogawa N, et al., Ind. Eng. Chem. Res., 46, 1952 (2007)
- Nakajima T, Kume T, Ikeda Y, Shiraki M, Kurokawa H, Iseki T, et al., Int. J. Hydrog. Energy, 40, 11451 (2015)
- Ma R, Castro-Dominguez B, Dixon AG, Ma YH, J. Membr. Sci., 564, 887 (2018)
- El Hawa HWA, Lundin STB, Paglieri SN, Harale A, Way JD, J. Membr. Sci., 494, 113 (2015)