화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 347-360, October, 2022
Preparation of semi-alicyclic homo- and blended polyimide membranes using alicyclic dianhydrides with kink structures and their gas separation properties
E-mail:
Aromatic polyimides are promising membrane materials for gas separation due to their excellent gas separation properties. Herein, two soluble semi-alicyclic polyimides were synthesized via a one-step thermal imidization process with two semi-alicyclic dianhydrides possessing kink structures: bicyclo[2,2,2] oct- 7ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohex ene-1,2-dicarboxylic anhydride (DOCDA), and a flexible aromatic diamine: 4,40-Oxydianiline (ODA). Their homo- and blended membranes were prepared in various mixing ratios (100/0, 75/25, 50/50, 25/75, and 0/100) and their gas permeation properties were investigated for five gases (H2, CO2, O2, N2, and CH4) and selectivity for five gas pairs (H2/CH4, H2/N2, CO2/CH4, CO2/N2, and O2/N2). The homopolyimides (BCDAODA, DOCDA-ODA) exhibited amorphous structure without crystallinity and good solubilities in the casting solvents. BCDA-ODA showed larger d-spacing/FFV values, higher gas diffusivities/gas solubilities than DOCDA-ODA, resulted in higher gas permeabilities and lower gas selectivity, which were remarkably affected by feed temperature. Also, the gas permeability and selectivity of the blended membranes were dependent upon the BCDA/DOCDA mole ratio. The good gas separation performances of homo- and blended membranes were observed for H2/CH4, H2/N2, CO2/CH4, and O2/N2, which are comparable to those of commercial membrane materials such as P84 , PSF, CA, Matrimid®, etc.
  1. Valappil RSK, Ghasem N, Al-Marzouqi M, J. Ind. Eng. Chem., 98, 103 (2021)
  2. Park MS, Kim JH, Patel R, Membr. J., 31, 268 (2021)
  3. Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A, Chem. Eng. Technol., 36, 1838 (2013)
  4. Baker RW, Ind. Eng. Chem. Res., 41, 1393 (2002)
  5. Robeson LM, Curr. opin. Solid State Mat. Sci., 4, 549 (1999)
  6. Robeson LM, J. Membr. Sci., 320, 390 (2008)
  7. Freeman BD, Macromolecules, 32, 375 (1999)
  8. Baker RW, Membrane Technology and Applications, John Wiley & Sons, 2012.
  9. Fane AT, Wang R, Jia Y, Membrane technology: past, present and future, Springer, pp. 1–45, 2011
  10. Ravanchi MT, Kaghazchi T, Kargari A, Desalination, 235, 199 (2009)
  11. Ismail AF, Khulbe KC, Matsuura T, Switz. Springer., 10, 973 (2015)
  12. Pinnau I, Freeman B, A.C.S. Symp. Ser., 1 (1999)
  13. Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48, 4638 (2009)
  14. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD, Science, 356(6343) (2017)
  15. Ayala D, J. Membr. Sci., 215, 61 (2003)
  16. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS, Prog. Polym. Sci, 37, 907 (2012)
  17. Álvarez C, Lozano AE, Juan-y-Seva M, José G, J. Membr. Sci., 602, 117959 (2020)
  18. Mulder M, Mulder J, Basic principles of membrane technology, SSBM, (1996).
  19. Damaceanu MD, Constantin CP, Nicolescu A, Bruma M, Belomoina N, Begunov RS, Eur. Polym. J., 50, 200 (2014)
  20. Lee WH, Seong JG, Hu X, Lee YM, J. Polym. Sci., 58, 2450 (2020)
  21. Matsumoto T, Mikami D, Hashimoto T, Kaise M, Takahashi R, Kawabata S, in Alicyclic polyimides–a colorless and thermally stable polymer for optoelectronic devices, pp. 1-11, (2009).
  22. Choi KY, Yi MH, in Soluble polyimides containing alicyclic structures, pp. 193-204, (1999).
  23. Maeda NAH, Oikawa H, Tominaga H, Japan Patent Appl., 72, 642 (1981)
  24. Choi KY, Yi MH, Jin MY, Huang W, Korea Polym. J., 4, 117 (1996)
  25. Park CY, Kim EH, Kim JH, Lee YM, Kim JH, Polymer, 151, 325 (2018)
  26. Shin SR, Moon SY, Park CY, Chang BJ, Kim JH, Polymer, 145, 95 (2018)
  27. Nohe HHH, USA Patent Appl., 743, 516 (1976)
  28. Neyertz S, Brown D, J. Chem. Phys., 115, 708 (2001)
  29. Duek SYN, Kim J, J. Membr. Sci., 6, 393 (2013)
  30. Mello IL, Delpech MC, Coutinho FMB, Albino FFM, J. Braz. Chem. Soc., 17, 194 (2006)
  31. Kusuma HH, Ibrahim Z, Othaman Z, J. Ilm. Pendidik. Fis. Al-Biruni, 9, 295 (2020)
  32. Mazinani S, Ramezani R, Molelekwa GF, Darvishmanesh S, Felice RD, der Bruggen BV, J. Membr. Sci., 574, 318 (2019)
  33. Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, et al., J. Membr. Sci., 251, 263 (2005)
  34. Reijerkerk SR, Nijmeijer K, Ribeiro CP Jr, Freeman BD, Wessling M, J. Membr. Sci., 367, 33 (2011)
  35. Javaid A, Chem. Eng. J., 112, 219 (2005)
  36. Mohapatra S, Samanta S, Kothari K, Mistry P, Suryanarayanan R, Cryst. Growth Des., 17, 3142 (2017)
  37. Park CY, Lee Y, Kim JH, Membr. J., 24, 1 (2014)
  38. Cheng J, Hu L, Li Y, Liu J, Zhou J, Cen K, Appl. Surf. Sci., 410, 206 (2017)
  39. Weigelt F, Georgopanos P, Shishatskiy S, Filiz V, Brinkmann T, Abetz V, Polymer, 10, 51 (2018)
  40. Tin PS, Chung TS, Liu Y, Wang R, Carbon, 42, 3123 (2004)
  41. Wiegand JR, Smith ZP, Liu Q, Patterson CT, Freeman BD, Guo R, J. Mater. Chem. A, 2, 13309 (2014)
  42. Yong WF, Zhang H, Prog. Mater. Sci., 116, 100713 (2021)
  43. Cho YK, Kim YW, Lee HY, Park SB, Park CY, Lee WK, J. Environ. Sci. Int., 24, 9 (2015)
  44. Pérez-Francisco JM, Santiago-García JL, Loría-Bastarrachea MAI, Aguilar-Vega M, Ind. Eng. Chem. Res., 56, 9355 (2017)
  45. Xu Y, Chen C, Li J, Chem. Eng. Sci., 62, 2466 (2007)
  46. Lin WH, Vora RH, Chung TS, J. Polym. Sci. B: Polym. Phys., 38, 2703 (2000)
  47. Park SH, Kim KJ, So WW, Moon SJ, Lee SB, Macromol. Res., 11, 157 (2003)
  48. Li Y, Ding M, Xu J, Macromol. Chem. Phys., 198, 2769 (1997)
  49. Guiver MD, Robertson GP, Dai Y, Bilodeau F, Kang YS, Lee KJ, et al., J. Polym. Sci. A: Polym. Chem., 40, 4193 (2002)
  50. Kim S, Jo HJ, Lee YM, J. Membr. Sci., 441, 1 (2013)
  51. Lee JHKKS, J. Korean. Ind. Eng. Chem., 18, 483 (2007)
  52. Lin H, Freeman BD, J. Membr. Sci., 239, 105 (2004)
  53. Matteucci S, Yampolskii Y, Freeman BD, Pinnau I, Transport of gases and vapors in glassy and rubbery polymers (2006)
  54. Yampolskii Y, Starannikova L, Belov N, Bermeshev M, Gringolts M, Finkelshtein E, J. Membr. Sci., 453, 532 (2014)
  55. Belov N, Nizhegorodova Y, Bermeshev M, Yampolskii Y, J. Membr. Sci., 483, 136 (2015)
  56. Klepic M, Jansen JC, Fuoco A, Esposito E, Izák P, Petrusová Z, et al., Sep. Purif. Technol., 270, 118812 (2021)
  57. Kim SH, Hong SR, Membr. J., 27, 319 (2017)
  58. Heck R, Qahtani MS, Yahaya GO, Tanis I, Brown D, Bahamdan AA, et al., Sep. Purif. Technol., 173, 183 (2017)
  59. Asghar H, Ilyas A, Tahir Z, Li X, Khan AL, Sep. Purif. Technol., 203, 233 (2018)
  60. Yeom C, Lee S, Lee J, J. Appl. Polym. Sci., 78, 179 (2000)
  61. Hosseini SS, Chung TS, J. Membr. Sci., 328, 174 (2009)
  62. Ahn J, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314, 123 (2008)
  63. Zhang Y, Musselman IH, Ferraris JP, Balkus KJ Jr, J. Membr. Sci., 313, 170 (2008)
  64. Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211, 311 (2003)
  65. Huang Y, Paul DR, Ind. Eng. Chem. Res., 46, 2342 (2007)
  66. Puleo A, Paul DR, Kelley S, J. Membr. Sci., 47, 301 (1989)
  67. Muruganandam N, Koros W, Paul D, J. Polym. Sci. B: Polym. Phys., 25, 1999 (1987)
  68. Koros W, Fleming G, Jordan S, Kim T, Hoehn H, Prog. Polym. Sci, 13, 339 (1988)
  69. Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, et al., Polymer, 54, 4729 (2013)
  70. Feng F, Liang CZ, Wu J, Weber M, Maletzko C, Zhang S, et al., Polymer, 13, 2745 (2021)
  71. Rodríguez-Jardón L, López-González M, Iglesias M, Maya EM, J. Membr. Sci., 619, 118795 (2021)
  72. Yoo SY, Park HB, Membr. J., 30, 450 (2020)
  73. Mazzei IR, Nikolaeva D, Fuoco A, Loïs S, Fantini S, Monteleone M, et al., Membr. J., 10, 224 (2020)
  74. Swaidan R, Ghanem B, Pinnau I, ACS Macro Lett. (2015)
  75. Comesaña-Gándara B, Chen J, Bezzu CG, Carta M, Rose I, Ferrari MC, et al., Energy Environ. Sci., 12, 2733 (2019)