화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 213-220, October, 2022
Patternization of cathode metal using low surface energy organic molecules in OLED thermal evaporation process
E-mail:,
Facile cathode metal patterning is immensely vital these days as sensor embedded or transparent OLED device applications. In this study, we report a self-metal patterning method by controlling the surface energy of beneath layer and metal thermal deposition temperature in the patterning layer/metal structure in OLED evaporation process. In order to realize the self-metal patterning, a metal patterning layer (MPL) was introduced before the metal deposition which has the property of inhibition of metal deposition by the control of surface energy. Among several MPLs, a low surface energy material of CBP (4,40-bis (N-carbazolyl)-1,10-biphenyl) shows a good self-metal patterning of low deposition temperature Mg metal. Whereas, the lowest surface energy materials of PFTC (polyfluoro-tetracosane) results in excellent patterning properties in both Mg as well as high source evaporation temperature metal Ag. Our self-metal patterning technology could be very useful for upcoming numerous electronic applications.
  1. Wang Z, Chang Y, Wang Q, Zhang Y, Qiu J, Helander M, et al., Dig. Tech. Pap., 50, 853 (2019)
  2. Li Q, Liu K, Jia J, Hu W, Lu H, Chen W, et al., Dig. Tech. Pap., 52, 1426 (2021)
  3. Lee J, Choi Y, Lee HS, Heo E, Lim D, Lee G, et al., J. Imaging Sci. Technol., 68 (2021)
  4. Song MG, Kim KS, Yang HI, Kim SK, Kim JH, Han CW, et al., Org. Electron., 76, 105418 (2020)
  5. Man JX, He SJ, Wang DK, Yang HN, Lu ZH, Org. Electron., 63, 41 (2018)
  6. Wang Z, Chang Y, Zhang Y, Qiu J, Helander M, Symp SID, Dig. Tech. Pap, 52, 285 (2021)
  7. Lee SH, Jeong YC, Shin KY, Yoon CR, Meet. Abstr, 1176, MA2019 (2019)
  8. Cosnahan T, Watt AAR, Assender HE, Surf. Coat. Technol., 336, 128 (2018)
  9. Jung SK, Lee JH, Lee JY, Ross CA, Nano Lett., 10, 3722 (2010)
  10. Xiang C, Kung SC, Taggart DK, Thompson MA, Aleix G, Yang Y, et al., ACS Nano, 2, 1939 (2008)
  11. Park BK, Kim DJ, Jeong SH, Moon JH, Kim JS, Thin Solid Films, 515, 7706 (2007)
  12. Tsujioka T, J. Mater. Chem. C, 2, 221 (2014)
  13. Tsujioka T, Takagi R, Shiozawa T, J. Mater. Chem., 20, 9623 (2010)
  14. Varagnolo S, Park KW, Lee JK, Hatton RA, J. Mater. Chem. C, 8, 13453 (2020)
  15. Varagnolo S, Lee JM, Amari H, Hatton RA, Mater. Horiz, 7, 143 (2020)
  16. Tsujioka T, Chem. Rec., 16, 231 (2015)
  17. Kang YJ, Han SH, Lee JY, J. Ind. Eng. Chem., 62, 258 (2018)
  18. Hikima T, Adachi Y, Hanaya M, Oguni M, Phys. Rev. B, 52, 3900 (1995)
  19. Kaptay G, J. Nanosci. Nanotechnol., 12, 2625 (2012)
  20. Mer VKL, Ind. Eng. Chem. Res., 44, 1270 (1952)
  21. Annamalai M, Gopinadhan K, Han SA, Saha S, Park HJ, Cho EB, et al., Nanoscale, 8, 5764 (2016)
  22. Buckingham AD, Fowler PW, Huston JM, Chem. Rev., 88, 963 (1988)
  23. Kendall K, J. Phys. D-Appl. Phys., 4, 1186 (1971)
  24. Clint JH, Wicks AC, Int. J. Adhes. Adhes., 21, 267 (2001)
  25. Ahn H, Lee H, Yang J, Lee C, Symp SID, Dig. Tech. Pap, 43, 1481 (2012)
  26. Lee CY, Chen YM, Deng YZ, Kuo YP, Chen PY, Tsai L, et al., Nanomaterials, 10, 663 (2020)
  27. Kwon SK, Baek JH, Choi HC, Kim SK, Lampande R, Pode R, et al., RSC Adv., 9, 42561 (2019)
  28. Wang Y, Liang Q, Huang J, Ma D, Jiao Y, RSC Adv., 7, 28494 (2017)
  29. Kim SK, Lampande R, Kwon JH, ACS Photon., 6, 2957 (2019)
  30. Kiba T, Masui K, Inomate Y, Furumoto A, Kawamura M, Abe Y, et al., Vacuum, 192, 110432 (2021)
  31. Liu Y, Huang CZ, Nanoscale, 5, 7458 (2013)
  32. Bassim ND, Gregorio BTD, Kilcoyne ALD, Scott K, Chou T, Wirick S, et al., J. Microsc., 245, 288 (2012)
  33. Mayer J, Giannuzzi LA, Kamino T, Michael J, MRS Bull., 32, 400 (2007)
  34. Seifert R, Moraes IRD, Scholz S, Gather MC, Lüssem B, Leo K, Org. Electron., 14, 115 (2013)