화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 205-212, October, 2022
Tough antifouling organogels reinforced by the synergistic effect of oleophobic and dipole–dipole interactions
E-mail:,
Slippery organogels have gained increasing interest as competitive candidates for antifouling applications. However, it remains challenging to develop tough organogels suitable for fouling resistance in dynamic and flexible application scenarios. Herein, a kind of physically crosslinked organogels with a combination of desirable properties, including high toughness, transparency, surface slipperiness, and fouling resistance is developed. The representative pAL organogels, constructed by poly(acrylonitrileco-lauryl acrylate) (pAL) copolymer and infiltrated with n-hexadecane as a lubricating solvent, possess high tensile fracture stress, fracture strain, Young’s modulus, and toughness of 4.28 MPa, 517%, 2.52 MPa, and 11.19 MJ m-3. In the organogels, the polar cyano groups from the pAN segments serve as physical cross-linking points, where the synergistic effects played by oleophobic and dipole–dipole interactions significantly toughen the materials. Meanwhile, the soft oleophilic poly(lauryl acrylate) chains offer considerable solvent content, giving rise to satisfactory surface slipperiness. Therefore, the organogels bring about a 57.16% and 81.50% reduction of protein and bacteria adhesion in comparison to the control. The satisfactory antifouling performance has been further confirmed with Spirulina platensis. It is deemed that this organogel may provide great potential for various applications in the future such as anti-adhesion materials and self-cleaning coating.
  1. Hwang GB, Page K, Patir A, Nair SP, Allan E, Parkin IP, ACS Nano, 12, 6050 (2018)
  2. Hu P, Xie Q, Ma C, Zhang G, Langmuir, 36, 2170 (2020)
  3. Chen R, Zhang Y, Xie Q, Chen Z, Ma C, Zhang G, Adv. Funct. Mater., 31, 2011145 (2021)
  4. Liu C, Ma C, Xie Q, Zhang G, J. Mater. Chem. A, 5, 15855 (2017)
  5. Maan AMC, Hofman AH, Vos WM, Kamperman M, Adv. Funct. Mater., 30, 2000936 (2020)
  6. Xie L, Hong F, He C, Ma C, Liu J, Zhang G, et al., Polymer, 52, 3738 (2011)
  7. Su B, Tian YE, Jiang L, J. Am. Chem. Soc., 138, 1727 (2016)
  8. Li P, Zeng L, Guo H, Guo H, Li W, Acta Polym. Sinica, 51, 1307 (2020)
  9. Yu L, Hou Y, Cheng C, Schlaich C, Noeske PL, Wei Q, et al., ACS Appl. Mater. Interfaces, 9, 44281 (2017)
  10. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, et al., Langmuir, 31, 9125 (2015)
  11. Hu P, Xie Q, Ma C, Zhang G, Chem. Eng. J., 406, 126870 (2021)
  12. Park D, Weinman CJ, Finlay JA, Fletcher BR, Paik MY, Sundaram HS, et al., Langmuir, 26, 9772 (2010)
  13. Manna U, Raman N, Welsh MA, Zayas-Gonzalez YM, Blackwell HE, Palecek SP, et al., Adv. Funct. Mater., 26, 3599 (2016)
  14. Zhao H, Sun Q, Deng X, Cui J, Adv. Mater., 30, 1802141 (2018)
  15. Zhang P, Lin L, Zang D, Guo X, Liu M, Small, 13, 1503334 (2017)
  16. Zeng L, Liu Z, Huang J, Wang X, Guo H, Li WH, Gels, 8, 407 (2022)
  17. Liu M, Wang S, Wei Z, Song Y, Jiang L, Adv. Mater., 21, 665 (2009)
  18. Lin L, Liu M, Chen LI, Chen P, Ma J, Han D, et al., Adv. Mater., 22, 4826 (2010)
  19. Liu H, Zhang P, Liu M, Wang S, Jiang L, Adv. Mater., 25, 4477 (2013)
  20. Sunny S, Cheng G, Daniel D, Lo P, Ochoa S, Howell C, et al., Proc. Natl. Acad. Sci. U. S. A., 113, 11676 (2016)
  21. Amini S, Kolle S, Petrone L, Ahanotu O, Sunny S, Sutanto CN, et al., Science, 357, 668 (2017)
  22. Yao XI, Dunn SS, Kim P, Duffy M, Alvarenga J, Aizenberg J, Angew. Chem.-Int. Edit., 53, 4418 (2014)
  23. MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, et al., ACS Biomater. Sci. Eng., 1, 43 (2015)
  24. Ru Y, Fang R, Gu Z, Jiang L, Liu M, Angew. Chem.-Int. Edit., 59, 11876 (2020)
  25. Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J, Nat. Mater., 14, 790 (2015)
  26. Amini S, Kolle S, Petrone L, Ahanotu O, Sunny S, Sutanto CN, et al., Science, 357, 668 (2017)
  27. Yang L, Dong S, Zhou W, Wu Q, Zheng Y, Cui J, Chem. Eng. J., 417, 127901 (2020)
  28. Wang Y, Yao X, Wu S, Li Q, Lv J, Wang J, et al., Adv. Mater., 29, 1700865 (2017)
  29. Yao XI, Ju J, Yang S, Wang J, Jiang L, Adv. Mater., 26, 1895 (2014)
  30. Liang Y, Wang P, Zhang D, ACS Appl. Bio Mater. 4, 4, 6056 (2021)
  31. Meng Z, Liu Q, Zhang YI, Sun J, Yang C, Li H, et al., Adv. Mater., 34, e2106208 (2022)
  32. Zeng L, Cui H, Peng H, Sun X, Liu Y, Huang J, et al., J. Mater. Sci. Technol., 121, 227 (2022)
  33. Park JY, Song H, Kim T, Suk JW, Kang TJ, Jung D, et al., Carbon, 96, 805 (2016)
  34. Guo H, Mussault C, Brûlet A, Marcellan A, Hourdet D, Sanson N, Macromolecules, 49, 4295 (2016)
  35. Guo H, Sanson N, Marcellan A, Hourdet D, Macromolecules, 49, 9568 (2016)
  36. Wang YJ, Zhang XN, Song Y, Zhao Y, Chen LI, Su F, et al., Chem. Mater., 31, 1430 (2019)
  37. Iatridi Z, Saravanou SF, Tsitsilianis C, Carbohydr. Polym., 219, 344 (2019)
  38. Webber RE, Creton C, Brown HR, Gong JP, Macromolecules, 40, 2919 (2007)
  39. Intra J, Glasgow JM, Mai HQ, Salem AK, J. Control. Release, 127, 280 (2008)
  40. Guo H, Nakajima T, Hourdet D, Marcellan A, Creton C, Hong W, et al., Adv. Mater., 31, e1900702 (2019)
  41. Magin CM, Cooper SP, Brennan AB, Mater. Today, 13, 36 (2010)
  42. Su X, Yang M, Hao D, Guo X, Jiang L, J. Colloid Interface Sci., 598, 104 (2021)
  43. Xie Q, Pan J, Ma C, Zhang G, Soft Matter, 15, 1087 (2019)
  44. Han X, Wu J, Zhang X, Shi J, Wei J, Yang Y, et al., J. Mater. Sci. Technol., 61, 46 (2021)
  45. Howell C, Vu TL, Lin JJ, Kolle S, Juthani N, Watson E, et al., ACS Appl. Mater. Interfaces, 6, 13299 (2014)
  46. Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, et al., Biomacromolecules, 7, 1449 (2006)
  47. Galhenage TP, Hoffman D, Silbert SD, Stafslien SJ, Daniels J, Miljkovic T, et al., ACS Appl. Mater. Interfaces, 8, 29025 (2016)
  48. Brady RF, Singer IL, Biofouling, 15, 73 (2000)