화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.114, 181-189, October, 2022
Mechanical evaluation of polymer microneedles for transdermal drug delivery: In vitro and in vivo
E-mail:, ,
In this study, we reported two types of PMNs based on polylactic acid (PLA) and polyvinyl alcohol (PVA), respectively. Parafilm M®film, porcine skin, and rats’ models were operated to evaluate the mechanical properties in vitro and in vivo to find optimal parameters for efficient insertion. Insertion depth was measured using Digital Force Gauge by changing insertion force and speed, respectively. Results showed that increasing the insertion force and speed used for PMNs application led to a significant increase in the depth of insertion. A force of 18 N under a speed of 330 mm/min was the optimal condition for inserting PMNs array into ParafilmM® film and porcine skin. In addition, PLA-MNs exhibited higher robustness and enhanced homogeneity in insertion depth compared with PVA-MNs, but PVA-MNs were able to reach much deeper insertion depth. Moreover, Sprague Dawley (SD) rat experiments confirmed the effectiveness of optimal insertion parameters for transdermal drug delivery. This study illustrated not only the development of novel PMNs but also the mechanical evaluation for the design of PMNs.
  1. Bal SM, Caussin J, Pavel S, Bouwstra JA, Eur. J. Pharm. Sci., 35 (2008)
  2. Gill HS, Denson DD, Burris BA, Prausnitz MR, Clin. J. Pain, 24, 585 (2008)
  3. Wang QL, Zhu DD, Chen Y, Guo XD, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 65, 135 (2016)
  4. Zhu DD, Wang QL, Liu XB, Guo XD, Acta Biomater., 41, 312 (2016)
  5. Park JH, Allen MG, Prausnitz MR, J. Control. Release, 104 (2005)
  6. Ullah A, Kim CM, Kim GM, R. Soc Open Sci., 5, 171609 (2018)
  7. Silva DD, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al., Chem. Eng. J., 340, 9 (2018)
  8. Ko PT, Lee IC, Chen MC, Tsai SW, J. Taiwan Inst. Chem. Eng., 51, 1 (2015)
  9. Larraneta E, Moore J, Vicente-Perez EM, Gonzalez-Vazquez P, Lutton R, Woolfson AD, et al., Int. J. Pharm., 472, 65 (2014)
  10. Li J, Ma YJ, Wang Y, Chen BZ, Guo XD, Zhang CY, Chem. Eng. J., 341, 450 (2018)
  11. Shuai C, Guo W, Wu P, Yang W, Hu S, Xia Y, Feng P, Chem. Eng. J., 347, 322 (2018)
  12. Sausse LM, Deleers M, Delchambre A, Int. J. Pharm., 480, 152 (2015)
  13. Zhang Y, Jiang G, Yu W, Liu D, Xu B, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 85, 18 (2018)
  14. Lee FW, Hung WH, Ma CW, Yang YJ, Biomicrofluidics, 10 (2016)
  15. Ling J, Song Z, Wang J, Chen K, Li J, Xu S, et al., J. Mech. Behav. Biomed. Mater., 68, 173 (2017)
  16. Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, van den Berg A, Luttge R, Bouwstra JA, J. Control. Release, 128, 80 (2008)
  17. Yan G, Warner KS, Zhang J, Sharma S, Gale BK, Int. J. Pharm., 391, 7 (2010)
  18. Zhang YH, Zhang YH, Stephen AC, Karthikeyan S, Biomed. Microdevices, 20 (2018)
  19. Vinayakumar KB, Hegde GM, Nayak MM, Dinesh NS, Rajanna K, Microelectron. Eng., 128, 12 (2014)
  20. Chen BZ, Ashfaq M, Zhu DD, Zhang XP, Guo XD, Macromol. Rapid Commun., 39, 1800075 (2018)
  21. Zhu DD, Chen BZ, He MC, Guo XD, J. Ind. Eng. Chem., 51, 178 (2017)
  22. Donnelly RF, Garland MJ, Morrow DIJ, Migalska K, Singh TRR, Majithiya R, et al., J. Control. Release, 147, 333 (2010)
  23. Wang QL, Ren JW, Chen BZ, Jin X, Zhang CY, Guo XD, J. Ind. Eng. Chem., 59, 251 (2018)
  24. Meyer W, Hautarzt, 47, 178 (1996)
  25. Coulman SA, Birchall JC, Alex A, Pearton M, Hofer B, O’Mahony C, et al., Pharm. Res., 28, 66 (2011)
  26. He MC, Chen BZ, Ashfaq M, Guo XD, Drug Deliv. Transl. Res, 8, 1034 (2018)
  27. Choi O, Lee MC, Int. J. Hydrog. Energy, 41, 20731 (2016)
  28. Chen MC, Ling MH, Lai KY, Pramudityo E, Biomacromolecules, 13, 4022 (2012)
  29. Dragicevic N, Maibach H, Adv. Drug Deliv. Rev., 127, 58 (2018)