화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.4, 386-393, August, 2022
실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향
Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam
E-mail:
초록
본 연구에서는 실란 커플링제 옥틸트리메톡시실란(octyltrimethoxysilane, OTMS)을 사용하여 친수성 탄산칼슘(CaCO3) 나노입자의 표면을 개질하였으며, OTMS에 의한 CaCO3 나노입자의 표면 개질은 FT-IR, DSC, XRD XPS 및 TGA 분석 을 통하여 확인하였다. 또한 부유 시험과 접촉각 측정을 통하여 OTMS 농도가 CaCO3 나노입자의 표면 소수성 변화에 미치는 영향에 관하여 살펴보았다. 부유 시험 결과에 따르면 1 wt% OTMS 농도 조건에서 측정한 active ratio 값이 97.0 ± 0.5%로서, OTMS가 CaCO3 나노입자 표면을 매우 효율적으로 소수화 개질하는 실란 커플링제임을 알 수 있었 다. 또한 OTMS로 개질된 CaCO3 나노입자 1 wt%를 함유하는 수용액에 대한 기포 안정성 측정 결과, OTMS 농도가 1 wt%인 조건에서 가장 안정한 기포가 생성되며, 접촉각은 91.8 ± 0.7°임을 확인하였다. 또한 동일한 1 wt% OTMS 농도 조건에서 에멀젼 입자 크기가 가장 작은 안정한 상태의 에멀젼이 형성됨을 확인하였다. 이러한 결과들은 OTMS 로 개질된 CaCO3 나노입자가 다양한 산업 응용 분야에서 기포 안정화제 및 에멀젼 유화제로서 적용이 가능함을 의미 하는 것이다.
In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.
  1. Cui ZG, Cui YZ, Cui CF, Chen Z, Binks BP, Langmuir, 26, 12567 (2010)
  2. Premphet K, Horanont P, Polymer, 41, 9283 (2000)
  3. Wang C, Sheng Y, Bala H, Zhao X, Zhao J, Ma X, Wang Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27, 42 (2007)
  4. Osman MA, Suter UW, Chem. Mater., 14, 4408 (2002)
  5. Mihajlović S, Daković A, Sekulić Z, Jovanović V, Vučinić D, J. Serb. Chem. Soc., 67, 1 (2009)
  6. Demjén Z, Pukánszky B, Nagy J, Polymer, 40, 1763 (1999)
  7. Fekete E, Pukánszky B, J. Colloid Interface Sci., 194, 269 (1997)
  8. Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD, Bull. Mat. Sci., 33, 277 (2010)
  9. Yin Y, Wang X, Adv. Mater. Res., 79-82, 1967 (2009)
  10. Liao J, Du G, Qiao X, Hao D, J. Chin. Ceram. Soc., 39, 641 (2011)
  11. Esumi K, Ueno M, Structure-performance relationships in surfactant, Marcel Dekker, New York (1997).
  12. Grosse I, Estel K, Colloid Polym. Sci., 278, 1000 (2000)
  13. Tiberg F, Brinck J, Grant L, Curr. Opin. Colloid Interface Sci., 4, 411 (1999)
  14. Somasundaran P, Huang L, Adv. Colloid Interface Sci., 88, 179 (2000)
  15. Song EM, Kim DW, Kim BJ, Lim JC, Colloids Surf. A: Physicochem. Eng. Asp., 461, 1 (2014)
  16. Song EM, Kim DW, Lim JC, J. Ind. Eng. Chem., 28, 351 (2015)
  17. Kim DW, Lee JY, Lee SM, Lim JC, Colloids Surf. A: Physicochem. Eng. Asp., 536, 213 (2018)
  18. Lee JY, Jo SH, Lim JC, J. Ind. Eng. Chem., 74, 63 (2019)
  19. Yang ZY, Tang YJ, Zhang JH, Chalcogenide Lett., 10, 131 (2013)
  20. Shimpi N, Mali A, Hansora DP, Mishra S, Nanosci. Nanoeng., 3, 8 (2015)
  21. Lee YJ, Park KH, Lim JC, Appl. Chem. Eng., 31, 49 (2020)
  22. Mishra S, Chatterjee A, Singh R, Polym. Adv. Technol., 22, 2571 (2011)
  23. Mavropoulos E, Costa AM, Costa LT, Achete CA, Mello A, Granjeiro JM, Rossi AM, Colloids Surf. B: Biointerfaces, 83, 1 (2011)
  24. Ghosh S, Goswami SK, Mathias LJ, J. Mater. Chem. A, 1, 6073 (2013)
  25. Ek S, Root A, Peussa M, Niinisto L, Thermochim. Acta, 379, 201 (2001)
  26. Binks BP, Lumsdon SO, Langmuir, 16, 8622 (2000)
  27. Binks BP, Rodrigues JA, Angew. Chem.-Int. Edit., 46, 5389 (2007)
  28. Tambe DE, Sharma MM, J. Colloid Interface Sci., 157, 244 (1993)
  29. Cui ZG, Cui CF, Zhu Y, Binks BP, Langmuir, 28, 314 (2012)
  30. Binks BP, Curr. Opin. Colloid Interface Sci., 7, 21 (2002)
  31. Rio E, Drenckhan W, Salonen A, Langevin D, Adv. Colloid Interface Sci., 205, 74 (2014)
  32. Fletcher PDI, Holt BL, Langmuir, 27, 12869 (2011)
  33. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ, Angew. Chem.-Int. Edit., 45, 3526 (2006)
  34. Binks BP, Horozov TS, Angew. Chem.-Int. Edit., 117, 3788 (2005)