화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.4, 343-351, August, 2022
리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향
Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries
E-mail:
초록
리튬이온 전지(lithium-ion batteries, LIBs)는 높은 에너지 밀도, 느린 자가방전율, 고율 충전 능력 및 긴 배터리 수명 등의 좋은 성능으로 촉망받는 에너지 저장 장치로 꼽힌다. 그러나 고에너지 밀도의 전기자동차 및 대형 디바이스 산 업에서 이러한 LIBs의 적용은 큰 안전 문제를 일으키고 있다. 이러한 문제를 해결하기 위하여 열적 안정성 및 내재적 안전성이 높은 재료를 개발하는 것이 LIBs의 안정성 및 전기화학적 성능을 향상시키는 궁극적인 해결방법이다. 본 총설에서는 상용 분리막의 안정성 문제 극복을 위한 분리막의 표면 개질 기술을 소개하였으며 이를 이용하여 개질 된 리튬이온 전지용 분리막을 활용한 연구 동향을 요약, 정리하였다. 또한 이를 기반으로 표면 개질에 따른 분리막에 대한 향후 전망을 논의하였다.
Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.
  1. Cheng Q, He W, Zhang X, Li M, Song X, RSC Adv., 6, 10250 (2016)
  2. Lagadec MF, Zahn R, Wood V, Nat. Energy, 4, 16 (2018)
  3. Yin X, Zhang Y, Yuan JJ, Zhu BK, Zhu LP, Song YZ, Sun CC, Electrochim. Acta, 275, 25 (2018)
  4. Waqas M, Ali S, Lv W, Chen D, Boateng B, He W, Adv. Mater. Interfaces, 6, 1801330 (2019)
  5. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L, Sci. Rep., 4, 1 (2014)
  6. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X, Energy Environ. Sci., 7, 3857 (2014)
  7. Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L, J. Membr. Sci., 428, 11 (2013)
  8. Orendorff CJ, Lambert TN, Chavez CA, Bencomo M, Fenton KR, Adv. Energy Mater., 3, 314 (2013)
  9. Zhu X, Jiang X, Ai X, Yang H, Cao Y, ACS Appl. Mater. Interfaces, 7, 24119 (2015)
  10. Shi J, Xia Y, Yuan Z, Hu H, Li X, Zhang H, Liu Z, Sci. Rep., 5, 1 (2015)
  11. Luo R, Wang C, Zhang Z, Lv W, Wei Z, Zhang Y, Luo X, He W, ACS Appl. Energy Mater., 1, 921 (2018)
  12. Wang H, Gao H, Electrochim. Acta, 215, 525 (2016)
  13. Baldwin RS, Guzik M, Shierski M, NASA Center for AeroSpace Information, 216979, 1 (2009)
  14. Francis CF, Kyratzis IL, Best AS, Adv. Mater., 32, 1904205 (2020)
  15. Waqas M, Tan C, Lv W, Ali S, Boaten B, Chen W, Wei Z, Feng JC, Ahmed J, Goodenough JB, He W, ChemElectroChem, 5, 2722 (2018)
  16. Alireza M, Seyedeh Z, Mohammad S, Sharifzadeh M, Design and Operation of Solid Oxide Fuel Cells in Design and Operation of Solid Oxide Fuel Cells, 85-130, Academic Press, Cambridge, USA (2020).
  17. Liu H, Xu J, Guo B, He X, Ceram. Int., 40, 14105 (2014)
  18. Zhang Z, Yuan W, Li L, Particuology, 37, 91 (2018)
  19. Feng LF, Shi JL, Jiang JH, Li H, Zhu BK, Zhu LP, RSC Adv., 4, 22501 (2014)
  20. Chen W, Shi L, Zhou H, Zhu J, Wag Z, Mao X, Chi M, Sun L, Yuan S, ACS Sustain. Chem. Eng., 4, 3794 (2016)
  21. Zuo X, Wu J, Ma X, Deng X, Cai J, Chen Q, Liu J, Nan J, J. Power Sources, 407, 44 (2018)
  22. Hu S, Lin S, Tu Y, Hu J, Wu Y, Liu G, Li F, Yu F, Jiang T, J. Mater. Chem. A, 4, 3513 (2016)
  23. Liu M, Zhang P, Gou L, Hou Z, Huang B, Mater. Lett., 208, 98 (2017)
  24. Gupta A, Sivaram S, Energy Technol., 7, 1800819 (2019)
  25. Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W, J. Power Sources, 376, 177 (2018)
  26. Shekarian E, Nasr MRJ, Mohammadi T, Bakhtiari O, Javanbakht M, J. Nanostruct., 9, 736 (2019)
  27. Xiang Y, Zhu W, Qiu W, Guo W, Lei J, Liu D, Qu D, Xie Z, Tang H, Li J, Chem.-Eur. J., 3, 911 (2018)
  28. Niu X, Li J, Song G, Li Y, He T, Energy Mater., 57, 7042 (2022)
  29. Xiao Y, Fu A, Zou Y, Huang L, Wang H, Su Y, Zheng J, Chem. Eng. J., 438, 135550 (2022)
  30. Lee H, Jeon H, Gong SH, Ryou MH, Lee YM, Appl. Surf. Sci., 427, 139 (2018)
  31. Juang RS, Liang CH, Ma WC, Tsai CY, Huang C, J. Taiwan Inst. Chem. Eng., 45, 3046 (2014)
  32. Lee R, Lim C, Kim MJ, Lee YS, Appl. Chem. Eng., 32, 55 (2021)
  33. Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30, 160 (2019)
  34. Jin SY, Manuel J, Zhao X, Park WH, Ahn JH, J. Ind. Eng. Chem., 45, 15 (2017)
  35. Li X, He J, Wu D, Zhang M, Meng J, Ni P, Electrochim. Acta, 167, 396 (2015)
  36. Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD, Phys. Chem. Chem. Phys., 13, 14457 (2011)
  37. Jeon H, Jin SY, Park WH, Lee H, Kim HT, Ryou MH, Lee Y, Electrochim. Acta, 212, 649 (2016)
  38. Sabetzadeh N, Falamaki C, Riahifar R, Yaghmaee MS, Raissi B, Solid State Ion., 363, 115589 (2021)
  39. Li C, Li HL, Li CH, Liu YS, Sung YC, Huang C, Jpn. J. Appl. Phys., 57, 01AB03-1 (2018)
  40. Jeong HS, Lee SY, J. Power Sources, 196, 6716 (2011)
  41. Liu H, Xu J, Guo B, He X, J. Appl. Polym. Sci., 131, 41156 (2014)
  42. Shin WK, Kim DW, J. Power Sources, 226, 54 (2013)
  43. Shi C, Zhang P, Chen L, Yang P, Zhao J, J. Power Sources, 270, 547 (2014)
  44. Wang Z, Zhu H, Yang L, Wang X, Liu Z, Chen Q, Plasma Sci. Technol., 18, 424 (2016)
  45. Han M, Kim DW, Kim YC, ACS Appl. Mater. Interfaces, 8, 26073 (2016)
  46. Wang Z, Guo F, Chen C, Shi L, Yuan S, Sun L, Zhu J, ACS Appl. Mater. Interfaces, 7, 3314 (2015)