화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 348-359, September, 2022
Insight into the anti-corrosion performance of three imidazo-pyridazines for Al alloy in different concentrations of hydrochloric acid solutions
E-mail:,
Imidazo-pyridazine and Bromo/Chloro-Imidazo-pyridazines are employed as the inhibitors for Al alloy in 0.1 M HCl and 0.5 M HCl solutions. The electrochemical tests and adsorption model analysis revealed that three compounds are mixed-type inhibitors and Imidazo-pyridazine exhibited the best anti-corrosion performance for Al electrode in HCl solutions by physicochemical. From electrochemical results, the best anti-corrosion efficiency is 88.1 % for Al in 0.5MHCl with 2.0mMIP, while the efficiency is 75.5 % for Al in 0.5 M HCl with 1.0 mM IP. The different inhibition behaviors result from the probability of the formation of AlClads and N-onium ions. The formation of adsorption is due to the electrostatic attraction between AlClads and N-onium ions. The surface topography test revealed that the Imidazo-pyridazine is the best corrosion barrier for Al in 0.5 M HCl. The dynamic simulation demonstrated that the inhibition molecules and protonated molecules can adsorb on the Al surface spontaneously with parallel adsorption configuration no matter in more or less Cl- atmosphere.
  1. Hukovic MM, Babic R, Grubac Z, J. Appl. Electrochem., 32, 35 (2002)
  2. Xhanari K, Finšgar M, Arabian J. Chem., 12(8), 4646 (2019)
  3. Trueba M, Trasatti SP, Mater. Chem. Phys., 121, 523 (2010)
  4. He X, Jiang Y, Li C, Wang W, Hou B, Wu L, Corrosion Sci., 83, 124 (2014)
  5. Lee CP, Chang CC, Chen YY, Yeh JW, Shih HC, Corrosion Sci., 50, 2053 (2008)
  6. Raviprabha K, Bhat RS, Solution. Surf. Engin. Appl. Electrochem., 55, 723 (2019)
  7. Saillard R, Viguier B, Odemer G, Pugliara A, Fori B, Blanc C, Corrosion Sci., 142, 119 (2018)
  8. Guardiola XV, Fori B, Bonino JP, Duluard S, Blanc C, Corrosion Sci., 155, 109 (2019)
  9. Visser P, Terryn H, Mol JMC, Corrosion Sci., 140, 272 (2018)
  10. Yang L, Wan Y, Qin Z, Xu Q, Min Y, Corrosion Sci., 130, 85 (2018)
  11. Xie Y, Meng X, Mao D, Qin Z, Wan L, Huang Y, ACS Appl. Mater. Interfaces, 13, 32161 (2021)
  12. Cen H, Zhang X, Zhao L, Chen Z, Guo X, Corrosion Sci., 161 (2019)
  13. Tan B, Zhang S, Cao X, Fu A, Guo L, Marzouki R, et al., J. Colloid Interface Sci., 609, 838 (2022)
  14. Zhou Y, Zhu C, Xu S, Xiang B, Marzouki R, J. Ind. Eng. Chem., 102, 302 (2021)
  15. Feng L, Ren X, Feng Y, Tan B, Zhang S, Li W, et al., Phys. Chem. Chem. Phys., 22, 4592 (2020)
  16. Luo W, Lin Q, Ran X, Li W, Tan B, Fu A, et al., J. Mol. Liq., 341, 117370 (2021)
  17. Huang H, Fu Y, Li F, Wang Z, Zhang S, Wang X, et al., Chem. Eng. J., 384, 123293 (2020)
  18. Zhao Q, Tang T, Dang P, Zhang Z, Wang F, Metals, 44, 44 (2017)
  19. Ren X, Xu S, Chen S, Chen N, Zhang S, RSC Adv., 5(123), 101693 (2015)
  20. Abdallah M, Sobhi M, AlTass HM, J. Mol. Liq., 223, 1143 (2016)
  21. Shetty SK, Shetty AN, J. Mol. Liq., 225, 426 (2017)
  22. Safak S, Duran B, Yurt A, Türkoglu G, Corrosion Sci., 54, 251 (2012)
  23. Zhang QI, Gao Z, Xu F, Zou X, Colloids Surf. A: Physicochem. Eng. Asp., 380(1-3), 191 (2011)
  24. Njoku DI, Ukaga I, Ikenna OB, Oguzie EE, Oguzie KL, Ibisi N, J. Mol. Liq., 219, 417 (2016)
  25. Anbarasi CM, Divya G, Mater. Today: Proc., 4, 5190 (2017)
  26. Fouda AS, Al-Sarawy AA, Ahmed FS, El-Abbasy HM, Corrosion Sci., 45, 635 (2009)
  27. Li X, Deng S, Xie X, Corrosion Sci., 81, 162 (2014)
  28. Xhanari K, Finšgar M, RSC adv., 6(67), 62833 (2016)
  29. Li X, Deng S, Fu H, Corrosion Sci., 53, 1529 (2011)
  30. Prakashaiah BG, Kumara DV, Pandith AA, Shetty AN, Rani BEA, Corrosion Sci., 136, 326 (2018)
  31. Ren X, Xu S, Gu X, Tan B, Hao J, Feng LI, et al., J. Colloid Interface Sci., 585, 614 (2021)
  32. Guo L, Obot IB, Zheng X, Shen X, Qiang Y, Kaya S, et al., Appl. Surf. Sci., 406, 301 (2017)
  33. Xu Y, Zhang S, Li W, Guo L, Xu S, Feng L, et al., Appl. Surf. Sci., 459, 612 (2018)
  34. Umoren SA, Solomon MM, J. Ind. Eng. Chem., 21, 81 (2014)
  35. Qiang Y, Zhang S, Yan S, Zou X, Chen S, Corrosion Sci., 126, 295 (2017)
  36. Abdulazeez I, Zeino A, Kee CW, Al-Saadi AA, Khaled M, Wong MW, et al., Appl. Surf. Sci., 471, 494 (2018)
  37. Sorkhabi HA, Shabani B, Aligholipour B, Seifzadeh D, Appl. Surf. Sci., 252, 4039 (2006)
  38. Oguzie EE, Okolue BN, Ebenso EE, Onuoha GN, Onuchukwu AI, Mater. Chem. Phys., 87, 394 (2004)
  39. Gao X, Huang Q, Ma D, Jiang Y, Ren T, Guo X, et al., J. Mol. Liq., 333, 115964 (2021)
  40. Gao MH, Zhang SD, Yang BJ, Qiu S, Wang HW, Wang JQ, Appl. Surf. Sci., 530, 147211 (2020)
  41. Ford FP, Burstein GT, Hoar TP, J. Electrochem. Soc., 127, 1325 (1980)
  42. Nguyen TH, Foley RT, J. Electrochem. Soc., 129, 27 (1982)
  43. Tan BC, Lan W, Zhang ST, Deng HD, Qiang YJ, Fu AQ, et al., Colloids Surf. A: Physicochem. Eng. Asp., 645, 128892 (2022)
  44. Tan B, Xiang B, Zhang S, Qiang Y, Xu L, Chen S, et al., J. Colloid Interface Sci., 582, 918 (2021)
  45. Lenderink HJW, Linden MVD, De Wit JHW, Electrochim. Acta, 38, 1989 (1993)
  46. Noor EN, Mater. Chem. Phys., 114, 533 (2009)
  47. Tan B, Zhang S, Qiang Y, Feng L, Liao C, Xu Y, et al., J. Mol. Liq., 248, 902 (2017)
  48. Obot IB, Obi-Egbedi NO, Umoren SA, Corrosion Sci., 51, 276 (2009)
  49. Qiang Y, Zhang S, Tan B, Chen S, Corrosion Sci., 133, 6 (2018)
  50. Feng LI, Zhang S, Tao B, Tan B, Xiang B, Tian W, et al., Colloids Surf. B: Biointerfaces, 190, 110898 (2020)
  51. Tan B, Zhang S, Liu H, Guo Y, Qiang Y, Li W, et al., J. Colloid Interface Sci., 538, 519 (2019)