화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 316-324, September, 2022
Fabrication of efficient electrocatalytic system with ruthenium cobalt sulfide over a carbon cloth
E-mail:
Probing effective, highly active, and inexpensive electrocatalysts for oxygen evolution reaction (OER) is of immense importance for water electrolysis. Transition metal chalcogenides have been developed as a new class of materials for energy storage and conversion owing to their distinctive properties, such as capacitance, conductivity, and redox behavior. Three-dimensional carbon cloth (CC), is a unique carbon network with extraordinary flexibility, mechanical stability, and high conductivity for application in energy-conversion systems. In this study, we designed ruthenium cobalt sulfide over a carbon cloth (RuCoS2/CC) via electrodeposition followed by an immersion technique and applied it for the OER. The molar ratio for Ru (amount of Ru – 10, 20, 30 mg & immersion time – 3, 6, and 9 h), Co (0.05 to 0.3 M), and S (0.05 to 0.2 M) precursors were optimized. Owing to the existence of binary active sites, heteroatoms, and synergetic effect between the transition metal chalcogenides and the carbon substrate, Ru (20 mg immersed for 6 h) at CoS2 (Co – 0.2 M & S2 - 0.05 M) modified CC (shortly denoted as RuCoS2/ CC) exhibits a lower overpotential (315 mV), better Tafel slope (74 mV dec-1), and excellent durability (retention rate 94.64%) compared with CoS2/CC and previous studies. Therefore, RuCoS2/CC is perceived to show better OER performance in the electrocatalysis of water.
  1. Long X, Wang Z, Xiao S, An Y, Yang S, Mater. Today, 19(4), 213 (2016)
  2. Chen M, Liu D, Zi B, Chen Y, Liu D, Du X, et al., J. Energy Chem., 65, 405 (2021)
  3. Yang L, Zhang L, J. Colloid Interface Sci., 607, 546 (2022)
  4. Ying Z, Zheng X, Cui G, Energy Conv. Manag., 115, 26 (2016)
  5. Hu S, Xu L, Wang L, Li D, Zhang P, Chen S, Int. J. Hydrog. Energy, 41(2), 773 (2016)
  6. Agrafiotis C, Roeb M, Sattler C, Renew. Sust. Energ. Rev., 42, 254 (2015)
  7. Gannouni M, Assaker IB, Chtourou R, Int. J. Hydrog. Energy, 40(23), 7252 (2015)
  8. La Verne JA, Tandon L, J. Phys. Chem. B, 107(49), 13623 (2003)
  9. Wei G, Xu Z, Zhao X, Wang S, Kong F, An C, J. Alloy. Compd., 893, 162328 (2022)
  10. Mai HD, Kim S, Yoo H, J. Ind. Eng. Chem., 82, 359 (2020)
  11. Yu M, Budiyanto E, Tüysüz H, Angew. Chem.-Int. Edit., 61, 1 (2022)
  12. Zeng K, Zhang D, Prog. Energy Combust. Sci., 36(3), 307 (2010)
  13. Song F, Schenk K, Hu X, Energy Environ. Sci., 9(2), 473 (2016)
  14. Tian J, Liu Q, Asiri AM, Sun X, J. Am. Chem. Soc., 136(50), 7587 (2014)
  15. Ma TY, Dai S, Jaroniec M, Qiao SZ, J. Am. Chem. Soc., 136(39), 13925 (2014)
  16. Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, et al., J. Am. Chem. Soc., 137(37), 11900 (2015)
  17. Yan X, Miao J, Wang J, Jiang H, You M, Zhu Y, et al., Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 269, 115166 (2020)
  18. Liang Y, Wu D, Fu R, Sci. Rep., 3, 1 (2013)
  19. Yang YJ, Li Y, Ding X, Zhang C, Ren H, Guo F, et al., J. Alloy. Compd., 871, 159510 (2021)
  20. Li XX, Chen GF, Xiao K, Li N, Ma TY, Liu ZQ, Electrochim. Acta, 255, 153 (2017)
  21. Li H, Chen S, Zhang Y, Zhang Q, Zhang Q, Jia X, et al., Nat. Commun., 9(1), 1 (2018)
  22. Yan Z, Sun H, Chen X, Liu H, Zhao Y, Li H, et al., Nat. Commun., 9(1), 1 (2018)
  23. Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, et al., Adv. Mater., 26(17), 2683 (2014)
  24. Vayner E, Sidik RA, Anderson AB, Popov BN, J. Phys. Chem. C, 111(28), 10508 (2007)
  25. Gong W, Zhang H, Yang L, Yang Y, Wang J, Liang H, J. Ind. Eng. Chem., 106, 492 (2022)
  26. Balu S, Palanisamy S,Velusamy V, Yang TCK, El-Shafey ESI, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 108, 110367 (2020)
  27. Palanisamy S, Velmurugan S, Yang TCK, Ultrason. Sonochem., 64(1), 105043 (2020)
  28. Velmurugan S, Palanisamy S, Yang TCK, Sens. Actuators B-Chem., 316, 128106 (2020)
  29. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, et al., J. Am. Chem. Soc., 140(7), 2610 (2018)
  30. Peng Y, Chen S, Green Energy Environ., 3(4), 335 (2018)
  31. He T, Peng Y, Li Q, Lu JE, Liu Q, Mercado R, et al., Mater. Interfaces, 11(50), 46912 (2019)
  32. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang YJ, Snyder J, et al., J. Phys. Chem. Lett., 5(14), 2474 (2014)
  33. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y, J. Phys. Chem. Lett., 3(3), 399 (2012)
  34. Wang JX, Marinkovic NS, Zajonz H, Ocko BM, Adzic RR, J. Phys. Chem. B, 105(14), 2809 (2002)
  35. Chang SH, Danilovic N, Chang KC, Subbaraman R, Paulikas AP, Fong DD, et al., Nat. Commun., 5 (2014)
  36. Chen Y, Wang D, Meng T, Xing Z, Yang X, ACS Appl. Energy Mater., 5(1), 697 (2021)
  37. Wang X, Zhu Y, Vasileff A, Jiao Y, Chen S, Song L, et al., ACS Energy Lett., 3(5), 1198 (2018)
  38. Yao Y, Hu S, Chen W, Huang ZQ, Wei W, Yao T, et al., Nat. Catal., 2(4), 304 (2019)
  39. Gloag L, Benedetti TM, Cheong S, Webster RF, Marjo CE, Gooding JJ, et al., Nanoscale, 10(32), 15173 (2018)
  40. Hussain I, Lamiel C, Mohamed SG, Vijayakumar S, Ali A, Shim JJ, J. Ind. Eng. Chem., 71, 250 (2019)
  41. Hamnabard N, Hanifehpour Y, Joo SW, J. Ind. Eng. Chem., 49, 88 (2017)
  42. Zhu C, Gao D, Ding J, Chao D, Wang J, Chem. Soc. Rev., 47(12), 4332 (2018)
  43. Feng LL, Yu G, Wu Y, Li GD, Li H, Sun Y, et al., J. Am. Chem. Soc., 137(44), 14023 (2015)
  44. Zhang S, Sun Y, Liao F, Shen Y, Shi H, Shao M, Electrochim. Acta, 283, 1695 (2018)
  45. Huang ZF, Song J, Li K, Tahir M, Wang YT, Pan L, et al., J. Am. Chem. Soc., 138(4), 1359 (2016)
  46. Wang L, Duan X, Liu X, Gu J, Si R, Qiu Y, et al., Adv. Energy Mater., 10(4), 1 (2020)
  47. Lv H, Pan Q, Song Y, Liu XX, Liu T, A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors, Vol. 12, Springer Singapore, 2020.
  48. Babar P, Lokhande A, Shin HH, Pawar B, Gang MG, Pawar S, et al., Small, 14(7), 1 (2018)
  49. Jadhav HS, Roy A, Desalegan BZ, Seo JG, Sustain. Energy Fuels, 4(1), 312 (2019)
  50. Therese GHA, Kamath PV, Chem. Mater., 12(5), 1195 (2000)
  51. Li GR, Xu H, Lu XF, Feng JX, Tong YX, Su CY, Nanoscale, 5(10), 4056 (2013)
  52. Xie S, Deng Y, Mei J, Yang Z, Lau WM, Liu H, Compos. Part B Eng., 93, 203 (2016)
  53. Ma D, Hu B, Wu W, Liu X, Zai J, Shu C, et al., Nat. Commun., 10(1) (2019)
  54. del Servicio Civil AN, Angew. Chemie Int. Ed. 6(11), 951–952, 69(6) 2013–5, (2021)
  55. Devadas A, Baranton S, Coutanceau C, Front. Energy Res., 8, 1 (2020)
  56. Pawar AS, Garje SS, Bull. Mat. Sci., 38(7), 1843 (2015)
  57. Veerakumar P, Salamalai K, Dhenadhayalan N, Lin KC, Chem. - An Asian J., 14(15), 2662 (2019)
  58. Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, et al., Nanoscale Horizons, 2(6), 342 (2017)
  59. Alodan M, Smyrl W, Electrochim. Acta, 44(2-3), 299 (1998)
  60. Lin JY, Liao JH, Chou SW, Electrochim. Acta, 56(24), 8818 (2011)
  61. Irshad A, Munichandraiah N, ACS Appl. Mater. Interfaces, 9(23), 19746 (2017)
  62. Stelmachowski P, Duch J, Sebasti D, Materials, 1 (2021)
  63. Dong C, Zhang X, Xu J, Si R, Sheng J, Luo J, et al., Small, 16(5), 1 (2020)
  64. Kim JG, Cho J, Han S, Lee H, Yuk E, Bae B, et al., J. Mater. Chem. A, 10, 5361 (2022)
  65. Fan K, Zou H, Lu Y, Chen H, Li F, Liu J, et al., ACS Nano, 12(12), 12369 (2018)
  66. Huang J, Chen J, Yao T, He J, Jiang S, Sun Z, et al., Angew. Chem.-Int. Edit., 127(30), 8846 (2015)