화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 293-315, September, 2022
Scale-up study of aerated coaxial mixing reactors containing non-newtonian power-law fluids: Analysis of gas holdup, cavity size, and power consumptionc
E-mail:
The use of coaxial mixers has significantly improved gas dispersion in non-Newtonian fluids. However, to the best of our knowledge, no scale-up investigation of an aerated coaxial mixer has been reported in the literature. This study aims to explore the gas hold-up, energy dissipation rate, power consumption and cavity size in order to provide the guideline for scaling-up of the coaxial mixers. Through the use of computational fluid dynamics and electrical resistance tomography, the effects of the aeration rate, central impeller type, rotating mode, impeller speed, and pumping direction on the gas dispersion efficacy in both small-scale and large-scale coaxial mixers containing non-Newtonian fluids were investigated. For the coaxial mixer in the co-rotating mode, the same flow regime was achieved when the central impeller tip speed and the anchor impeller rotational speed were kept constant in both small-scale and large-scale systems. It was observed that maintaining the aeration rate per volume of the non- Newtonian fluid constant was beneficial to preserve the performance of the large-scale coaxial mixer the same as its small-scale counterpart. The use of specific power consumption as a scale up criterion effectively improved the energy dissipation rate uniformity, which is critical for shear sensitive applications.
  1. Kordas M, Konopacki M, Grygorcewicz B, Augustyniak A, Musik D, Wójcik K, et al., Processes, 8(10), 1 (2020)
  2. Schmidt FR, Appl. Microbiol. Biotechnol., 68(4), 425 (2005)
  3. Nienow AW, Encycl. Ind. Biotechnol., 1 (2010)
  4. Takors R, J. Biotechnol., 160(1-2), 3 (2012)
  5. Yavuz N, Sandeep KP, Int. J. Chem. React. Eng., 17(4), 1
  6. Scully J, Considine LB, Smith MT, McAlea E, Jones N, O’Connell E, et al., Biotechnol. Bioeng., 117(6), 1710 (2020)
  7. Cappello V, Plais C, Vial C, Augier F, Chem. Eng. Sci., 229, 116033 (2021)
  8. Xia J, Wang G, Fan M, Chen M, Wang Z, Zhuang Y, Chin. J. Chem. Eng., 30, 178 (2021)
  9. Mahdinia E, Cekmecelioglu D, A Essentials in Fermentation Technology, Springer, Cham, p. 313, 2019
  10. Wilkens RJ, Henry C, Gates LE, Chem. Eng. Prog., 99(5), 44 (2003)
  11. Dickey DS, Pharm. Blending Mix.(345) (2015)
  12. Mcconville FX, Kessler SB, Chem. Eng. Pharm. Ind., 241 (2019)
  13. Letellier B, Xuereb C, Swaels P, Hobbes P, Bertrand J, Chem. Eng. Sci., 57(21), 4617 (2002)
  14. Zlokarnik M, Scale-up Chem. Eng. (2002).
  15. Paglianti A, Pintus S, Giona M, Chem. Eng. Sci., 55(23), 5793 (2000)
  16. Bombac A, Zun I, Filipic B, Zumer M, AIChE J., 43(11), 2921 (1997)
  17. Bombac A, Zun I, Chem. Eng. Sci., 55(15), 2995 (2000)
  18. Nienow AW, Appl. Mech. Rev., 51(1), 3 (1998)
  19. Maluta F, Paglianti A, Montante G, Biochem. Eng. J., 166, 107867 (2021)
  20. Maluta F, Paglianti A, Montante G, Chem. Eng. Sci., 241, 116677 (2021)
  21. Wang P, Wang S, Gu Y, Si Q, Yuan S, 015103(January) (2022).
  22. Smith JM, Springer, Dordrecht, 1992, p.
  23. Doran P, Bioprocess Engineering Principles, 2nd ed., Elsevier, 2013.
  24. Mcfarlane CM, Nienow AW, Biotechnol. Prog., 11(6), 601 (1995)
  25. Böhm L, Hohl L, Bliatsiou C, Kraume M, Chemie-Ingenieur-Technik, 91(12), 1724 (2019)
  26. Bombac A, Zun I, Chem. Eng. J., 116(2), 85 (2006)
  27. Kadic E, Heindel TJ An Introduction to Bioreactor Hydrodynamics and Gas- Liquid Mass Transfer, Vol. 9781118104, 2014.
  28. Davis RZ, All Grad. Theses Diss., 537 (2010)
  29. Neubauer P, Junne S, Bioreactors, 323 (2016)
  30. He C, Ye P, Wang H, Liu X, Li F, Biochem. Eng. J., 141, 173 (2019)
  31. Ali H, Solsvik J, Phys. Fluids, 33, 3 (2021)
  32. Witz C, Treffer D, Hardiman T, Khinast J, Chem. Eng. Sci., 152, 636 (2016)
  33. Wang G, Haringa C, Noorman H, Chu J, Zhuang Y, Trends Biotechnol., 38(8), 846 (2020)
  34. Li C, Teng X, Peng H, Yi X, Zhuang Y, Zhang S, et al., Chem. Eng. Sci., 115329 (2020)
  35. Nienow AW, Chemie-Ingenieur-Technik, 93(1-2), 17 (2021)
  36. Diaz A, Acevedo F, Bioprocess Eng., 21(1), 21 (1999)
  37. Smith GW, Tavlarides LL, Placek J, Chem. Eng. Commun., 93(1), 49 (1990)
  38. Rahimzadeh A, Ein-mozaffari F, Lohi A, Ind. Eng. Chem. Res., 61(10), 3713 (2022)
  39. Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, AIChE J., 59(4), 215 (2012)
  40. Sadino-Riquelme MC, Rivas J, Jeison D, Donoso-Bravo A, Hayes RE, Fermentation, 8, 3 (2022)
  41. Ebrahimi M, Tamer M, Villegas RM, Chiappetta A, Ein-Mozaffari F, Processes, 7, 10 (2019)
  42. Campesi A, Cerri MO, Hokka CO, Badino AC, Bioprocess. Biosyst. Eng., 32(2), 241 (2009)
  43. Moilanen P, Laakkonen M, Visuri O, Aittamaa J, Ind. Eng. Chem. Res., 46(22), 7289 (2007)
  44. Hinge SP, Kumar R, Patwardhan AW, ACS Eng Au, 2(2), 75 (2022)
  45. Verma R, Mehan L, Kumar R, Kumar A, Srivastava A, Biochem. Eng. J., 151, 107312 (2019)
  46. Sieck JB, Cordes T, Budach WE, Rhiel MH, Suemeghy Z, Leist C, et al., J. Biotechnol., 164(1), 41 (2013)
  47. Jaszczur M, Mlynarczykowska A, Processes, 8, 8 (2020)
  48. Buffo MM, Corrêa LJ, Esperança MN, Cruz AJG, Farinas CS, Badino AC, Biochem. Eng. J., 114, 130 (2016)
  49. Roque T, Augier F, Hardy N, Chaabane FB, Béal C, Roque T, Augier F, Hardy N, Chaabane FB, Nienow A, 16th Eur. Conf. Mix. (2018).
  50. Cheung CKL, Leksawasdi N, Doran PM, AIChE J., 64(12), 4281 (2018)
  51. Hardy N, Augier F, Nienow AW, Béal C, Chaabane FB, Chem. Eng. Sci., 172, 158 (2017)
  52. Laakkonen M, Development and Validation of Mass Transfer Models for the Design of Agitated Gas-Liquid Reactors, 2006.
  53. Hubbard D, Ann. N. Y. Acad. Sci., 506(1), 600 (1987)
  54. Ju L, Chase GG, Bioprocess Eng., 8, 49 (1992)
  55. Stoker EB, Comparative Studies on Scale-Up Methods of Single-Use Bioreactors. Utah State University, 2011.
  56. Rieger F, Novák V, Chem. Eng. Sci., 27(1), 39 (1972)
  57. Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27(2), 153 (2009)
  58. Gimbun J, Rielly CD, Nagy ZK, Chem. Eng. Res. Des., 87(4), 437 (2009)
  59. Labík L, Moucha T, Petrícek R, Rejl JF, Valenz L, Haidl J, Chem. Eng. Sci., 170, 451 (2017)
  60. Wernersson ES, Trägårdh C, Chem. Eng. Sci., 54(19), 4245 (1999)
  61. Xu S, Hoshan L, Jiang R, Gupta B, Brodean E, O’Neill K, et al., Biotechnol. Prog., 33(4), 1146 (2017)
  62. Gaddis ES, Chem. Eng. Process., 38(4-6), 503 (1999)
  63. Joshi JB, Ranade VV, Gharat SD, Lele SS, Can. J. Chem. Eng., 68(5), 705 (1990)
  64. Rahman–Al Ezzi AA, Najmuldeena GF, Int. J. Eng. Res. Appl., 4, 286 (2014)
  65. Bredwell MD, Srivastava P, Worden RM, Biotechnol. Prog., 15(5), 834 (1999)
  66. Pakzad L, Ein-Mozaffari F, Upreti SR, Lohi A, Chem. Eng. Res. Des., 91(9), 1715 (2013)
  67. Kazemzadeh A, Ein-Mozaffari F, Lohi A, Pakzad L, Can. J. Chem. Eng., 94(12), 2394 (2016)
  68. Mishra P, Ein-mozaffari F, Particuology, 65, 1 (2022)
  69. Mishra P, Ein-mozaffari F, Chem. Eng. Res. Des., 178, 38 (2021)
  70. Mishra P, Ein-Mozaffari F, Powder Technol., 398, 117127 (2022)
  71. Mishra P, Ein-Mozaffari F, Chem. Eng. Process., 168, 108553 (2021)
  72. Mishra P, Ein-Mozaffari F, Powder Technol., 390, 159 (2021)
  73. Jamshidzadeh M, Ein-Mozaffari F, Lohi A, Chem. Eng. Res. Des., 174, 213 (2021)
  74. Jegatheeswaran S, Kazemzadeh A, Ein-Mozaffari F, Chem. Eng. J., 378, 122081 (2019)
  75. Jegatheeswaran S, Ein-Mozaffari F, Chem. Eng. J., 383, 123118 (2020)
  76. Jegatheeswaran S, Ein-Mozaffari F, Chem. Eng. Process., 156, 108091 (2020)
  77. Jamshidzadeh M, Ein-Mozaffari F, Lohi A, Ind. Eng. Chem. Res., 6, 1 (2020)
  78. Jamshidzadeh M, Ein-Mozaffari F, Lohi A, AIChE J., 66 (2020)
  79. Jamshidzadeh M, Kazemzadeh A, Ein-Mozaffari F, Lohi A, Chem. Eng. J., 401, 126002 (2020)
  80. Jamshidzadeh M, Kazemzadeh A, Ein-Mozaffari F, Lohi A, Chem. Eng. Process., 155, 108058 (2020)
  81. Rahimzadeh A, Ein-mozaffari F, Lohi A, Chem. Eng. Process., 177, 108983 (2022)
  82. Wajman R, Inf. Technol. Control, 48(3), 464 (2019)
  83. García-Ochoa F, Castro EG, Enzyme Microb. Technol., 28(6), 560 (2001)
  84. Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ, Biotechnol. Adv., 36(4), 1308 (2018)
  85. Wong I, Hernández A, García MA, Segura R, Rodríguez I, Process Biochem., 37(11), 1195 (2002)
  86. Bowler AL, Bakalis S, Watson NJ, Sensor, 20(7), 1813 (2020)
  87. Forte G, Alberini F, Simmons M, Stitt HE, J. Intell. Manuf., 32(2), 633 (2021)
  88. Rossi A, Alberini F, Brunazzi E, Chem. Eng. Res. Des., 177, 273 (2022)
  89. Bashiri H, Bertrand F, Chaouki J, Chem. Eng. J., 297, 277 (2016)
  90. Nauha EK, Visuri O, Vermasvuori R, Alopaeus V, Chem. Eng. Res. Des., 95, 150 (2015)
  91. Khalili F, Nasr MRJ, Kazemzadeh A, Ein-Mozaffari F, J. Chem. Technol. Biotechnol., 93(2), 340 (2018)
  92. Khalili F, Nasr MRJ, Kazemzadeh A, Ein-Mozaffari F, Chem. Eng. Res. Des., 125, 190 (2017)
  93. Sato Y, Sekoguchi K, Int. J. Multiph. Flow, 2(1), 79 (1975)
  94. Sajjadi B, Raman AAA, Ibrahim S, Shah RSSRE, Rev. Chem. Eng., 28(2-3), 171 (2012)
  95. Brucato A, Grisafi F, Montante G, Chem. Eng. Sci., 53(18), 3295 (1998)
  96. Ahmed SU, Ranganathan P, Pandey A, Sivaraman S, J. Biosci. Bioeng., 109(6), 588 (2010)
  97. Joshi JB, Nere NK, Rane CV, Murthy BN, Mathpati CS, Patwardhan AW, et al., Can. J. Chem. Eng., 89(1), 23 (2011)
  98. Khopkar AR, Kasat GR, Pandit AB, Ranade VV, Chem. Eng. Sci., 61(9), 2921 (2006)
  99. Ishii M, Kim S, Uhle J, Int. J. Heat Mass Transf., 45(15), 3111 (2002)
  100. Holzinger DIG, Eulerian Two-Phase Simulation of the Floation Process with OpenFOAM, Kepler, Johannes, 2016.
  101. Askari E, St-Pierre Lemieux G, Proulx P, Can. J. Chem. Eng., 97(9), 2548 (2001)
  102. Alves SS, Maia CI, Vasconcelos JMT, Chem. Eng. Sci., 57(3), 487 (2002)
  103. Khopkar AR, Rammohan AR, Ranade VV, Dudukovic MP, Chem. Eng. Sci., 60(8), 2215 (2005)
  104. Hibiki T, Ishii M, Int. J. Heat Mass Transf., 43(15), 2711 (2000)
  105. Mehta D, Radhakrishnan AKT, van Lier J, Clemens F, Water, 10(2), 1 (2018)
  106. Barros PL, Ein-mozaffari F, Lohi A, Process, 10(2), 275 (2022)
  107. Huang J, Zhang B, Dai G, Chen C, Yu H, Tian H, Chem. Eng. Technol., 130, 210 (2022)