화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 232-246, September, 2022
Optimization-based integrated decision model for smart resource management in the petrochemical industry
E-mail:
In this study, a new decision-supporting platform for the overall supply chain management of the petrochemical industries was proposed to maximize business profits. The proposed system integrates various decision-supporting models that address the critical challenges, both vertically and horizontally. Specifically, horizontal integration includes various decision-based problems along with the productive flow on the value chain from raw material purchasing and manufacturing to the final product sales, while vertical integration involves critical decisions at different levels, including the enterprise supply chain, the plant scheduling/planning, and the process operation. The optimization-based decision platform effectively supports the business’s supply chain management, plant planning, and process operation strategy. The platform integrates different decision and featuring models, including a price prediction and a paper trading model for reducing the financial risks, a mathematical model of naphtha thermal cracker for identifying the optimal operating, and an optimization model for maximizing business profits. As a result, business profit was improved by 5.30% with only paper trade optimization, 6.67% with optimal operating conditions combined with price forecasting, and 11.98% with overall supply chain optimization. Thereby, the proposed platform assists decision-makers in determining the timing and quantity of raw material purchases and final product sales, as well as the operation strategies for process facilities, utilities, and inventory management. This study could be used to aid in the establishment of annual planning and scheduling as an auxiliary indicator for business operations.
  1. Guo J, Zhao Z, Sun J, Sun S, Resources Policy, 77, 102737 (2022)
  2. Duan H, Liu Y, Wang G, Energy, 251, 123968 (2022)
  3. Li R, Hu Y, Heng J, Chen X, Technol. Forecasting Social Change, 173, 121181 (2021)
  4. Lyu B, Kwon H, Lee J, Yoon H, Jin J, Moon I, Comput. Aided Chem. Eng., 33, 829 (2014)
  5. Sung C, Kwon H, Lee J, Yoon H, Moon I, Comput. Aided Chem. Eng., 31, 145 (2012)
  6. Lee CY, Chou BJ, Huang CF, Adv. Eng. Informatics, 51, 101443 (2022)
  7. Lara JAA, Leger MW, Annual Meeting, NPRA, San Antonio, 2007.
  8. Kang SH, Yoon SM, Energy Economics, 36, 354 (2013)
  9. Wei Y, Wang Y, Huang D, Energy Economics, 32, 6 (2010)
  10. Fan Y, Zhang YJ, Tsai HT, Wei YM, Energy Economics, 30(6), 3156 (2008)
  11. Ostertagová E, Ostertag O, Faculty, of,, Mechanical Engineering (2011).
  12. Ince H, Trafalis TB, Int. J. General Systems, 37, 6 (2008)
  13. Vapik VN, IEEE Transactions on Neural Networks (1999)
  14. Baawain MS, Al-Serihi AS, Aerosol Air Quality Research, 14, 1 (2014)
  15. Xie W, Yu L, Xu S, Wang S, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 3994 LNCS-IV, p. 2006
  16. Yu L, Wang S, Lai KK, Energy Economics, 30, 5 (2008)
  17. Samuel OD, Kaveh M, Oyejide OJ, Elumalai PV, Verma TN, Nisar KS, et al., Case Studies Thermal Engineering, 33, 101947 (2022)
  18. Raja MAZ, Shoaib M, Hussain S, Nisar KS, Islam S, Int. Commun. Heat. Mass. Trans., 130, 105799 (2022)
  19. Raida Z, IEEE Antennas Propagation Magazine, 44, 6 (2002)
  20. Zhang GP, Qi M, Eur. J. Operational Res., 160, 501 (2005)
  21. Khashei M, Bijari M, Ardali GAR, Neurocomputing, 72(4-6), 956 (2009)
  22. Kwon H, Lyu B, Tak K, Lee J, Cho JH, Moon I, Comput. Chem. Eng., 84, 226 (2016)
  23. Oancea B, Ciucu SC, In Proceedings of the ‘‘Challenges of the Knowledge Society” Conference, pp. 1402–8, 2013
  24. Moghaddam AH, Moghaddam MH, Esfandyari M, Science, 21(41), 89 (2016)
  25. Khashei M, Bijari M, Appl. Soft Computing, 11(2), 2664 (2011)
  26. Koprinska I, Rana M, Agelidis VG, Knowledge-Based Systems, 82, 29 (2015)
  27. Kwon H, Tak K, Cho JH, Kim J, Moon I, Ind. Eng. Chem. Res., 56, 5 (2017)
  28. Barbaro A, Bagajewicz MJ, AIChE J., 50, 5 (2004)
  29. Barbaro A, Bagaiewicz MJ, AIChE J., 50, 5 (2004)
  30. Pongsakdi A, Rangsunvigit P, Siemanond K, Bagajewicz MJ, Int. J. Prod. Econ., 103, 1 (2006)
  31. Kwon H, Do TN, Kim J, Ind. Eng. Chem. Res., 59(25), 11610 (2020)
  32. Shen F, Wang M, Huang L, Qian F, J. Ind. Eng. Chem., 93, 394 (2021)
  33. Sundaram EF, Shreehan KM, Olszewski MM, Kirk-Othmer Encyclopedia of Chemical Technology (5th Ed), 2001.
  34. Zhou X, Yang Q, Yang S, Yan H, Feng X, Liu Y, et al., Chem. Eng. J., 444, 136684 (2022)
  35. Belohlav Z, Zamostny P, Herink T, Chem. Eng. Process., 42(6), 461 (2003)
  36. Shahrokhi M, Nejati A, Ind. Eng. Chem. Res., 41(25), 6572 (2002)
  37. Yoon SG, Park S, Lee J, Verderame PM, Floudas CA, Ind. Eng. Chem. Res., 48, 11017 (2009)
  38. Al-Sharrah GK, Alatiqi I, Elkamel A, Alper E, Ind. Eng. Chem. Res., 40, 2103 (2001)
  39. Jiménez A, Rudd DF, Meyer RR, Comput. Chem. Eng., 6, 219 (1982)
  40. Lababidi HMS, Ahmed MA, Alatiqi IM, Al-Enzi AF, Ind. Eng. Chem. Res., 43, 63 (2004)
  41. Julka N, Srinivasan R, Karimi I, Comput. Chem. Eng., 26, 1755 (2002)
  42. Julka N, Karimi I, Srinivasan R, Comput. Chem. Eng., 26, 1771 (2002)
  43. Göthe-Lundgren M, Lundgren JT, Persson JA, Int. J. Prod. Econ., 78, 255 (2002)
  44. Zhang J, Wen Y, Xu Q, Ind. Eng. Chem. Res., 51, 8453 (2012)
  45. Pérez-Lara M, Saucedo-Martínez JA, Marmolejo-Saucedo JA, Salais-Fierro TE, Vasant P, Wireless Networks, 26, 7 (2020)
  46. Park J, Park S, Yun C, Kim Y, Ind. Eng. Chem. Res., 49, 1 (2010)
  47. Do TX, Lim YI, Lee J, Lee W, Comput. Chem. Eng., 74, 128 (2015)
  48. Masoumi ME, Sadrameli SM, Towfighi J, Niaei A, Energy, 31(4), 516 (2006)
  49. Gao GY, Wang M, Ramshaw C, Li XG , Yeung H, Asia-Pacific J. Chem. Eng., 4, 6 (2009)