화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 170-180, September, 2022
Modulation electronic structure of NiS nanoarray induced by Fe, V doping for high efficiency water and urea electrolysis
E-mail:
Exploring high-efficient and stable low-cost electrocatalysts is of significant importance for boosting the efficiency of water splitting and purifying urea-enriched wastewater. Herein, bimetallic doping strategy was adopted to obtain jasminum nudiflorum-like Fe, V doped NiS arrays (Fe, V-NiS/NF) via typical hydrothermal process and subsequent anion exchange reaction. The as-obtained Fe, V-NiS/NF array displays high catalytic activity and stability toward oxygen evolution reaction (OER) and urea oxidation reaction (UOR) in alkaline media, with reduced overpotentials of 273 and 214 mV to deliver the current density of 50 mA cm 2 for OER and UOR, respectively. More notably, when employing Fe, V-NiS/NF as symmetric electrolytic cell for urea electrolysis, a low cell voltage of 1.45 V is needed at 10 mA cm-2, which is about 110 mV lower than the conventional water electrolysis. Meanwhile, the catalyst also displays superior stability for over 72 h. Such outstanding performance is attributed to the following points: (i) 3D porous flower-like structure facilitates the mass transfer and abundant exposure of active sites; (ii) in situ growth of catalysts on conductive substrate and the effective interface engineering of different composition shorten the charge transport pathways and expedite electron transfer. Density functional theory calculations demonstrate that the Fe and V dopants regulate the electronic environment of Ni sites and optimize the adsorption free energy of urea. This work provides a universal pathway to design highefficient and non-noble electrocatalysts for H2 production in an energy-saving way via urea electrolysis.
  1. Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rümmerli MH, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S, Adv. Mater., 32, 2006784 (2020)
  2. Zhang B, Yang F, Liu XD, Wu N, Che S, Li YF, Appl. Catal. B: Environ., 298, 120494 (2021)
  3. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ, Adv. Sci., 5(2), 1700464 (2018)
  4. Lu F, Zhou M, Zhou Y, Zeng X, Small, 13(45), 1701931 (2017)
  5. Cheng C, Liu F, Zhong D, Hao G, Liu G, Li J, Zhao Q, J. Colloid Interface Sci., 606, 873 (2022)
  6. Zhang JY, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, Xia BY, Nano Energy, 60, 894 (2019)
  7. Xu B, Yang X, Liu X, Song W, Sun Y, Liu Q, Yang H, Li C, J. Power Sources, 449, 227585 (2020)
  8. Sun HN, Liu JP, Chen G, Kim HS, Kim S, Hu ZW, Chen JM, Haw SC, Ciucci F, Jung W, Small. Methods, 6, 2101017 (2022)
  9. Yan W, Wang D, Diaz LA, Botte GG, Electrochim. Acta, 134, 266 (2014)
  10. Xu X, Ji S, Wang H, Wang XY, Linkov V, Wang RF, J. Colloid Interface Sci., 615, 163 (2022)
  11. Zhang HX, Jiang H, Hu YJ, Li YH, Xu QC, Petr SH, Li CZ, J. Mater. Chem. A, 7, 7548 (2019)
  12. Feng XJ, Hu ZA, Shi YL, Wang XT, Hou LJ, Ma WX, New. J. Chem., 44, 7552 (2020)
  13. Feng XJ, Shi YL, Shi JH, Hao LH, Hu ZA, J. Hydrol. Eng., 46, 5169 (2021)
  14. Gu CJ, Zhou GY, Yang J, Pang H, Zhang MY, Zhao Q, Gu XF, Tian S, Zhang JB, Xu L, Tang YW, Chem. Eng. J., 443, 136321 (2022)
  15. Zhang TQ, Mao ZF, Shi XJ, Jin J, He BB, Wang R, Gong YS, Wang HW, Energy Environ. Sci., 15, 158 (2022)
  16. Zhu HY, Li ZY, Xu F, Qin ZX, Sun R, Wang CH, Lu SJ, Zhang YF, Fan HS, J. Colloid Interface Sci., 611, 718 (2022)
  17. Sun R, Qin ZY, Liu XL, Wang CH, Lu SJ, Zhang YF, Fan HS, ACS Sustain. Chem. Eng., 9, 11769 (2021)
  18. Zhong MX, Li WM, Wang C, Lu XF, Appl. Surf. Sci., 575, 151708 (2022)
  19. Xiao X, Zhang GX, Xu YX, Zhang HL, Guo XT, Liu Y, Pang H, J. Mater. Chem. A, 7, 17266 (2019)
  20. Wang ZL, Liu WJ, Bao J, Song YH, She XJ, Hua YJ, Lv GA, Yuan JJ, Li HM, Xu H, Chem. Eng. J., 430, 133100 (2022)
  21. Ji XY, Zhang YX, Ma Z, Qiu YF, ChemSusChem, 13, 5004 (2020)
  22. Sun HC, Zhang W, Li JG, Li ZS, Ao X, Xue KH, Ostrikov KK, Tang J, Wang CD, Appl. Catal. B: Environ., 284, 119740 (2021)
  23. Yang N, Tang C, Wang K, Du G, Asiri AM, Sun X, NanoRes., 9, 3346 (2016)
  24. Wu LK, Zhu YX, Liu M, Hou GY, Tang YP, Cao HZ, Zhang HB, Zheng GQ, Int. J. Hydrog. Energy, 44, 5899 (2019)
  25. Huang SF, Hsu YY, Suen NT, Chan TS, Chen HM, Adv. Energy Mater., 8, 1870032 (2018)
  26. Cao Z, Zhou T, Ma X, Shen Y, Deng Q, Zhang W, Zhao Y, ACS Sustain. Chem. Eng., 8, 11007 (2020)
  27. Kresse G, Furthmüller J, Phys. Rev. B, 54, 11169 (1996)
  28. Grimme S, Ehrlich S, Goerigk L, J. Comput. Chem., 32, 1456 (2011)
  29. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Mori RA, Davis RC, Bargar JR, J. Am. Chem. Soc., 137, 1305 (2015)
  30. Wang Y, Jiao YQ, Yan HJ, Yang GC, Tian CG, Wu AP, Liu Y, Fu HG, Angew. Chem.-Int. Edit., 55, 6411 (2022)
  31. Amer MS, Arunachalam P, Ghanem MA, Shalwi MA, Ahmad A, Alharthi AI, Al-Mayouf AM, Int. J. Energy Res., 45, 9422 (2021)
  32. Zhang JY, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, Xia BY, Nano Energy, 60, 894 (2019)
  33. Dai TY, Zhang X, Sun MZ, Huang BL, Zhang N, Da PZ, Yang R, He ZD, Wang W, Xi PX, Yan CH, Adv. Mater., 33, 2102593 (2021)
  34. Liu JL, Zheng Y, Wang ZY, Vasileff A, Qiao SZ, Chem. Commun., 54, 463 (2018)
  35. Kan K, Ji YF, Zou HY, Zhang JF, Zhu BC, Chen H, Daniel Q, Luo Y, Yu JG, Sun LU, Angew. Chem.-Int. Edit., 56, 3289 (2017)
  36. Sun SC, Ma FX, Li Y, Dong LW, Liu H, Jiang CM, Song B, Zhen L, Xu CY, Sustain. Energy Fuels, 4, 3326 (2020)
  37. He XB, Zhao XR, Yin FX, Chen BH, Li GR, Yin HQ, Int. J. Energy Res., 44, 7057 (2020)
  38. Liang HF, Gandi AN, Anjum DH, Wang XB, Schwingenschlogl U, Alshareef HN, Nano Lett., 16, 7718 (2016)
  39. Yu J, Ma FX, Du Y, Wang PP, Xu CY, Zhen L, ChemElectroChem, 4, 594 (2017)
  40. Jiang SH, Zhang RY, Liu HX, Rao Y, Yu YA, Chen S, Yue Q, Zhang YN, Kang YJ, J. Am. Chem. Soc., 142, 6461 (2020)
  41. Huang ZP, Chen HZ, Chen ZB, Lv CC, Humphrey MG, Zhang C, Nano Energy, 9, 373 (2014)
  42. Jia X, Kang HJ, Yang XX, Li YL, Cui K, Wu XH, Qin W, Wu G, Appl. Catal. B: Environ., 312 (2022)
  43. Gu CJ, Zhou GY, Yang J, Pang H, Zhang MY, Zhao Q, Gu XF, Tian S, Zhang JB, Xu L, Tang YW, Chem. Eng. J., 443 (2022)
  44. Li D, Zhang YF, Zhou XM, Huang C, Wen Y, Liu LL, Li QW, Xu Y, Wu YZ, Ruan QD, Ma YH, Xiong FY, Xiao DZ, Liu P, Wang GM, Mehrjou B, J. Energy Chem., 71, 150 (2022)
  45. Lin JH, Wang HH, Yan YT, Zheng XH, Jia HN, Qi JL, Cao J, Tu JC, Fei WD, Feng JC, J. Mater. Chem. A, 6, 19151 (2018)
  46. Zheng XR, Han XP, Zhang YQ, Wang JH, Zhong C, Deng YD, Hu WB, Appl. Catal. B: Environ., 284 (2021)
  47. Pan Y, Wu YF, Hsain HA, J. Mater. Chem. A, 8, 13437 (2020)
  48. Asnavandi M, Yin YC, Li YB, Sun CH, Zhao C, ACS. Energy Lett., 3, 1515 (2018)
  49. Ding YY, Dua XQ, Zhang XS, Dalton Trans., 49, 15417 (2020)
  50. Li JX, Cui HY, Du XQ, Zhang XS, Dalton Trans, 51, 2444 (2022)