화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.113, 15-31, September, 2022
A review on electrochemical conversion of CO2 to CO: Ag-based electrocatalyst and cell configuration for industrial application
E-mail:
The current review discusses the recent advances in Ag-based electrocatalysts for electrocatalytic conversion of CO2 to CO. The comparable electrocatalytic activity, stability, and lower cost of the Ag-based catalysts with that of Au- and Pd-based catalysts make the former commercially more viable for the electrochemical CO2 conversion to CO. The challenges associated with the electrochemical CO production are discussed. The impacts of the surface composition, surface area, particle size, porosity, lattice edge, crystal plane, and the defects on the catalytic activity of the electrocatalyst are also reviewed. CO2 electrolysers, especially the membrane electrode assembly (MEA)-based electrolyser and its constituents, are described. The infrastructure of the gas diffusion electrode (GDE) and development thereof was found critical for the microenvironment of the liquid–gas interface near the catalyst surface in a GDE-based system to sustain a higher activity over a period of time still remains a challenge. Hence, pathways to cautiously produce benchmark GDEs are discoursed. The role of different ion-exchange membranes and the associated challenges are reviewed. In the end, perspectives on catalyst design and the electrochemical CO2 reduction (eCO2R) to CO process are given to assist in further improving the electrocatalytic efficiency.
  1. Martins F, Felgueiras C, Smitkova M, Caetano N, Energies, 12, 964 (2019)
  2. Rahman FA, Aziza MMA, Saidur R, Bakar WAWA, Hainin MR, Putrajaya R, et al., Renew. Sust. Energ. Rev., 71, 112 (2017)
  3. Archer D, Brovkin V, Clim. Change, 90, 283 (2008)
  4. Hao X, Ruihong Y, Zhuangzhuang Z, Zhen Q, Xixi L, Tingxi L, et al., Sci Rep., 11, 2659 (2021)
  5. Greenblatt JB, Miller DJ, Ager JW, Houle FA, Sharp ID, Joule, 2, 381 (2018)
  6. Jhong HRM, Tornow CE, Smid B, Gewirth AA, Lyth SM, Kenis PJA, ChemSusChem, 10, 1094 (2017)
  7. Tufa RA, Chanda D, Ma M, Aili D, Demissie TB, Vaes J, et al., Appl. Energy, 277, 115557 (2020)
  8. Kannan N, Vakeesan D, Renew. Sust. Energ. Rev., 62, 1092 (2016)
  9. Wang L, Nitopi SA, Bertheussen E, Orazov M, Morales-Guio CG, Liu X, et al., ACS Catal., 8, 7445 (2018)
  10. Mahyoub SA, Qaraah FA, Chen C, Zhang F, Yana S, Cheng Z, Energy Fuels, 4, 50 (2020)
  11. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, et al., Adv. Mater., 1807166 (2019)
  12. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM, J. Phys. Chem. Lett., 6, 4073 (2015)
  13. Hori Y, Electrochemical CO2 reduction on metal electrodes, 42, Springer, New York, pp. 89–189, 2008.
  14. Back S, Yeom MS, Jung Y, ACS Catal., 5, 5089 (2015)
  15. Sunley GJ, Watson D, Catal. Today, 58, 293 (2000)
  16. Hone CA, Lopatka P, Munday R, O’Kearney-McMullan A, Kappe CO, ChemSusChem, 12, 326 (2019)
  17. Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, et al., Catal. Today, 260, 107 (2016)
  18. Küngas R, J. Electrochem. Soc., 167, 044508 (2020)
  19. Hori Y, Kikuchi K, Suzuki S, Chem. Lett., 14, 1695 (1985)
  20. Hori Y, Murata A, Kikuchi K, Suzuki S, J. Chem. Soc.-Chem. Commun., 728-729 (1987)
  21. Hansen HA, Varley JB, Peterson AA, Nørskov JK, J. Phys. Chem. Lett., 4, 388 (2013)
  22. Hoshi N, Kato M, Hori Y, J. Electroanal. Chem., 440, 283 (1997)
  23. Hu H, Liu M, Kong Y, Mysuru N, Sun C, Gálvez-Vázquez MDJ, Müller U, Erni R, Grozovski V, Hou Y, Broekmann P, ACS Catal., 2020(10), 8503
  24. Zhang J, Luo W, Züttel A, J. Catal., 385, 140 (2020)
  25. Monteiro MCO, Philips MF, Schouten KJP, Koper MTM, Nat. Commun., 12, 4943 (2021)
  26. Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, et al., ACS Energy Lett., 3, 193 (2018)
  27. Dioxide. Materials, CO2 Electrolyzers, dioxidematerials.com/technology/co2-electrolysis/.
  28. We have developed a device that recycles CO2 into chemicals and fuels
  29. Evonik, Evonik and siemens to generate high-value specialty chemicals from carbon dioxide and ecoelectricity.
  30. Zhang X, Guo SX, Gandionco KA, Bond AM, Zhang J, Mater. Today Adv., 7, 100074 (2020)
  31. Vasileff A, Zhi X, Xu C, Ge L, Jiao Y, Zheng Y, et al., ACS Catal., 9, 9411 (2019)
  32. Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, et al., ACS Catal., 5, 4293 (2015)
  33. Gileadi E, Physical Electrochemistry: Fundamentals, Techniques, and Applications, first ed., WILEY-VCH Verlag, Weinheim, Germany, 2011.
  34. Chen Y, Li CW, Kanan MW, J. Am. Chem. Soc., 134, 19969 (2012)
  35. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, et al., Nat. Commun., 5, 3242 (2014)
  36. Hsieh YC, Senanayake SD, Zhang Y, Xu W, Polyansky DE, ACS Catal., 5, 5349 (2015)
  37. Verma S, Kim B, Jhong HRM, Ma S, Kenis PJA, ChemSusChem, 9, 1972 (2016)
  38. Delafontaine L, Asset T, Atanassov P, ChemSusChem, 13, 1688 (2020)
  39. Sun D, Xu X, Qin Y, Jiang SP, Shao Z, ChemSusChem, 13, 39 (2020)
  40. Deng W, Min S, Wang F, Zhanga Z, Kong C, Dalton Trans., 49, 5434 (2020)
  41. Kuang M, Guan A, Gu Z, Han P, Qian L, Zheng G, Nano Res., 12, 2324 (2019)
  42. Lee JH, Kattel S, Xie Z, Tackett BM, Wang J, Liu CJ, et al., Adv. Funct. Mater., 28, 1804762 (2018)
  43. Clark EL, Ringe S, Tang M, Walton A, Hahn C, Jaramillo TF, et al., ACS Catal., 9, 4006 (2019)
  44. Hori Y, Wakebe H, Tsukamoto T, Koga O, Electrochim. Acta, 39, 1833 (1994)
  45. Lee J, Lim J, Roh CW, Whang HS, Lee H, J. CO2 Util., 31, 244 (2019)
  46. Wang Y, Cao L, Libretto NJ, Li X, Li C, Wan Y, et al., J. Am. Chem. Soc., 141, 16635 (2019)
  47. Zhang L, Zhao Z, Gong J, Angew. Chem.-Int. Edit., 56, 11326 (2017)
  48. Luan C, Shao Y, Lu Q, Gao S, Huang K, Wu H, et al., ACS Appl. Mater. Interfaces, 10, 17950 (2018)
  49. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF, J. Am. Chem. Soc., 136, 14107 (2014)
  50. Liu C, Lourenço MP, Hedström S, Cavalca F, Diaz-Morales O, Duarte HA, et al., J. Phys. Chem. C, 121, 25010 (2017)
  51. Feng X, Jiang K, Fan S, Kanan MW, J. Am. Chem. Soc., 137, 4606 (2015)
  52. Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, et al., J. Am. Chem. Soc., 137, 9808 (2015)
  53. Mariano RG, McKelvey K, White HS, Kanan MW, Science, 358(358), 1187 (2017)
  54. Choi W, Won DH, Hwang YJ, J. Mater. Chem. A, 8, 15341 (2020)
  55. Plasma, Gao D, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P, et al., Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols 11 (2017) 4825.
  56. Sartin MM, Yu Z, Chen W, He F, Sun Z, Chen YX, et al., J. Phys. Chem. C, 122, 26489 (2018)
  57. Xiao H, Cheng T, Goddard WA, Sundararaman R, J. Am. Chem. Soc., 138, 483 (2016)
  58. Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW, J. Phys. Chem. C, 121, 14191 (2017)
  59. Liu M, Pang Y, Zhang B, Luna PD, Voznyy O, Xu XZJ, et al., Nature, 537, 382 (2016)
  60. Salehi-Khojin A, Jhong HRM, Rosen BA, Zhu W, Ma S, Kenis PJA, et al., J. Phys. Chem. C, 117, 1627 (2013)
  61. Wu X, Guo Y, Sun Z, Xie F, Guan D, Dai J, et al., Nat. Commun., 12, 660 (2021)
  62. Firet NJ, Smith WA, ACS Catal., 7, 606 (2017)
  63. Ma M, Trzes´niewski BJ, Xie J, Smith WA, Angew. Chem.-Int. Edit., 55, 9748 (2016)
  64. Abeyweera SC, Yu J, Perdew JP, Yan Q, Sun Y, Nano Lett., 20, 2806 (2020)
  65. Zeng L, Shi J, Chen H, Lin C, Energies, 14, 2840 (2021)
  66. Buckley AK, Cheng T, Oh MH, Su GM, Garrison J, Utan SW, et al., ACS Catal., 11, 9034 (2021)
  67. Pan Y, Paschoalino WJ, Bayram SS, Blum AS, Mauzeroll J, Nanoscale, 11, 18595 (2019)
  68. Wang R, Haspel H, Pustovarenko A, Dikhtiarenko A, Russkikh A, Shterk G, et al., ACS Energy Lett., 4, 2024 (2019)
  69. Abdinejad M, Silva ISD, Kraatz HB, J. Mater. Chem. A, 9, 9791 (2021)
  70. Yu Y, Zhong N, Fang J, Tang S, Ye X, He Z, et al., Catalysts, 9, 57 (2019)
  71. Liu S, Sun C, Xiao J, Luo JL, ACS Catal., 10, 3158 (2020)
  72. Fan T, Wu Q, Yang Z, Song Y, Zhang J, Huang P, et al., ChemSusChem, 13, 2677 (2020)
  73. Gao J, Zhu C, Zhu M, Fu Y, Huang H, Liu Y, et al., ACS Sustain. Chem. Eng., 7, 3536 (2019)
  74. Li H, Wen P, Itanze DS, Hood ZD, Ma X, Kim M, et al., Nat. Commun., 10, 5724 (2019)
  75. Durst J, Rudnev A, Dutta A, Fu Y, Herranz J, Kaliginedi V, et al., Chimia, 69, 769 (2015)
  76. Li H, Oloman C, J. Appl. Electrochem., 35, 955 (2005)
  77. Hashiba H, Weng LC, Chen Y, Sato HK, Yotsuhashi S, Xiang C, et al., J. Phys. Chem. C, 122, 3719 (2018)
  78. Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP, Acc. Chem. Res., 51, 910 (2018)
  79. Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, Kenis PJA, J. Power Sources, 301, 219 (2016)
  80. Liang S, Altaf N, Huang L, Gao Y, Wang Q, J. CO2 Util., 35, 90 (2020)
  81. Gabardo CM, O’Brien CP, Edwards JP, McCallum C, Xu Y, Dinh CT, et al., Joule, 3, 1 (2019)
  82. Gálvez-Vázquez MDJ, Moreno-García P, Xu H, Hou Y, Hu H, Montiel INZ, Rudnev AV, Alinejad S, Grozovski V, Wiley BJ, Arenz M, Broekmann P, ACS Catal., 2020(10), 13096
  83. Bal GOL, Strøm-Hansen P, Heli JP, Zeiter K, Therkildsen KT, Chorkendorff I, Seger B, ACS Appl Mater. Interfaces, 11, 41281 (2019)
  84. Kaczur JJ, Yang H, Liu Z, Sajjad SD, Masel RI, Front. Chem., 6, 263 (2018)
  85. Endrodi B, Kecsenovity E, Samu A, Darvas F, Jones RV, Török V, Danyi A, Janáky C, ACS Energy Lett., 4, 1770 (2019)
  86. Yang K, Kas R, Smith WA, Burdynyv T, ACS Energy Lett., 6, 33 (2021)
  87. Weng LC, Bell AT, Weber AZ, Phys. Chem. Chem. Phys., 20, 16973 (2018)
  88. Rabiee H, Ge L, Zhang X, Hu S, Li M, Yuan Z, Energy Environ. Sci., 14, 1959 (2021)
  89. Burdyny T, Smith WA, Energy Environ. Sci., 12, 1442 (2019)
  90. Oh S, Park H, Kim H, Park YS, Ha MG, Jang JH, et al., Coatings, 10, 341 (2020)
  91. Tiwari P, Tsekouras G, Swiegers GF, Wallace GG, ACS Appl. Mater. Interfaces, 10, 28176 (2018)
  92. Guzmán H, Zammillo F, Roldán D, Galletti C, Russo N, Hernández S, Catalysts, 482, 11 (2021)
  93. Wei L, Li H, Chen J, Yuan Z, Huang Q, Liao I, Henkelman G, Chen Y, ACS Catal., 10, 1444 (2020)
  94. Kim B, Hillman F, Ariyoshi M, Fujikaw S, Kenis PJA, J. Power Sources, 312, 192 (2016)
  95. Nguyen TN, Dinh CT, Chem. Soc. Rev., 49, 7488 (2020)
  96. Jouny M, Lv JJ, Cheng T, Ko YH, Zhu JJ, Goddard WA, Jiao F, Nat. Chem., 11, 846 (2019)
  97. Shi R, Guo J, Zhang X, Waterhouse GIN, Han Z, Zhao Y, et al., Nat. Commun., 11, 3028 (2020)
  98. Zielke L, Vierrath S, Moroni R, Mondon A, Zengerle R, Thiele S, RSC Adv., 6, 80700 (2016)
  99. Delacourt C, Ridgway PL, Kerr JB, Newman J, J. Electrochem. Soc., 155, B42 (2008)
  100. Reyes A, Jansonius RP, Mowbray BAW, Cao Y, Wheeler DG, Chau J, et al., ACS Energy Lett., 5, 1612 (2020)
  101. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR, Energy Technol., 5, 929 (2017)
  102. Aeshala LM, Rahman SU, Verma A, Sep. Purif. Technol., 94, 131 (2012)
  103. Aeshala LM, Uppaluria R, Verma A, Phys. Chem. Chem. Phys., 16, 17588 (2014)
  104. Xu Y, Edwards JP, Liu S, Miao RK, Huang JE, Gabardo CM, et al., ACS Energy Lett., 6, 809 (2021)
  105. Huang JE, Li F, Ozden A, Rasouli AS, Arquer FPCD, Liu S, Zhang S, Luo M, Wang X, Lum Y, Xu Y, Bertens K, Miao RK, Dinh CT, Sinton D, Sargent EH, Science, 372, 1074 (2021)
  106. Patru A, Binninger T, Priby B, Schmidt TJ, J. Electrochem. Soc., 166, F34 (2019)
  107. Pribyl-Kranewitter B, Beard A, Schuler T, Diklic N, Schmidt TJ, J. Electrochem. Soc., 168, 043506 (2021)
  108. Li YC, Zhou D, Yan Z, Gonçalves RH, Salvatore DA, Berlinguette CP, et al., ACS Energy Lett., 1, 1149 (2016)
  109. Yan Z, Hitt JL, Zeng Z, Hickner MA, Mallouk TE, Nat. Chem., 13, 33 (2021)
  110. Blommaert MA, Sharifian R, Shah NU, Nesbitt NT, Smith WZ, Vermaas DA, J. Mater. Chem. A, 9, 11179 (2021)
  111. Vermaas DA, Smith WA, ACS Energy Lett., 1, 1143 (2016)
  112. Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF, J. Mater. Chem. A, 4, 3068 (2016)
  113. Görlin M, Stenlid JH, Koroidov S, Wang HY, Börner M, Shipilin M, et al., Nat. Commun., 11, 6181 (2020)
  114. Iqbal MZ, Kriek RJ, Electrocatalysis, 9, 279 (2018)
  115. Pebley AC, Decolvenaere E, Pollocka TM, Gordon MJ, Nanoscale, 9, 15070 (2017)
  116. Salvatore DA, Weekes DM, He J, Dettelbach KE, Li YC, Mallouk TE, et al., ACS Energy Lett., 3, 149 (2018)
  117. Li YC, Yan Z, Hitt J, Wycisk R, Pintauro PN, Mallouk TE, Adv. Sustain. Syst., 2, 1700187 (2018)
  118. O’Brien CP, Miao RK, Liu S, Xu Y, Lee G, Robb A, et al., ACS Energy Lett., 6, 2952 (2021)
  119. Yang K, Li M, Subramanian S, Blommaert MA, Smith WA, Burdyny T, ACS Energy Lett., 6, 4291 (2021)