화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.4, 523-528, July, 2022
발포폴리스티렌이 폴리우레탄 폼의 흡음 특성에 미치는 영향
Effect of the Expandable Polystyrene on Acoustic Property of the Polyurethane Composite Foams
E-mail:
초록
폴리우레탄(PU) 폼은 차량 산업에서 흡음재와 쿠션재로 사용된다. 본 연구에서는 발포폴리스티렌 입자(expandable polystyrene, EPS)를 충전제로 사용하고, 함량을 변화시켜 폴리스티렌 입자가 폴리우레탄 폼의 흡음 성능에 미치는 영향을 조사하였다. EPS 입자의 약한 발포력은 폴리우레탄 폼 내벽의 변형을 야기시키지 않아, EPS 입자의 함량이 증가하더라도 PU 폼의 내부 모폴로지 변화는 거의 없었다. 하지만 폴리우레탄 폼 내부의 EPS 입자가 음파의 이동경로를 증가시키는 장애물로 작용하여, EPS 함량이 증가할수록 폴리우레탄 폼의 저음역대 흡음 성능은 증가하였다. 최종적으로, EPS 입자의 효과를 확인하기 위해 유기용매인 톨루엔을 이용하여 폴리우레탄 폼 내부의 EPS를 제거하였다. EPS 입자가 제거된 폴리우레탄 폼의 흡음 성능은 EPS 함량이 0 wt%인 폴리우레탄 폼 보다 낮은 흡음 성능을 보여 EPS가 폴리우레탄 폼 내부에서 흡음 성능을 향상시키는 역할을 한다고 할 수 있다.
Polyurethane (PU) foams are used as a sound absorbing and cushioning materials in the automotive industry. In this study, expandable polystyrene (EPS) was used as a filler and the effect of EPS in PU foams on the acoustic property was investigated by varying its contents. Even if the content of EPS increased, there was little change in the internal morphology of PU foams, because the EPS could not cause the deformation of the inner wall. However, as the EPS content increased, the low-frequency sound absorption performance increased, because the EPS acted as an obstacle to increase the path of sound waves. Finally, to confirm the effect of EPS, EPS was removed using toluene. After removal, the sound absorption performance showed a lower than that of PU foam with an EPS content of 0 wt%. EPS plays a role in improving the sound absorption performance inside the PU foam.
  1. Lee BY, Kim SY, Lee KH, Jin BS, Polym. Korea, 31, 289 (2007)
  2. Deng R, Davies P, Bajaj AK, J. Sound Vib., 262, 391 (2003)
  3. Sung G, Kim JW, Kim JH, J. Ind. Eng. Chem., 44, 99 (2016)
  4. Nine MJ, Ayub M, Zander AC, Tran DNH, Cazzolato BS, Losic D, Adv. Funct. Mater., 27, 1 (2017)
  5. Cao L, Fu Q, Si Y, Ding B, Yu J, Compos. Commun., 10, 25 (2018)
  6. Jingfeng N, GuiPing Z, J. Vib. Control, 22, 2861 (2016)
  7. Park J, Yang SH, Minn KS, Yu C, Pak SYB, Song YS, Youn JR, Mater. Des., 142, 212 (2018)
  8. Hyuk J, Suh K, Rae H, Hyun S, Bin C, Yeol S, Sung C, Seok Y, June Y, Ryoun J, J. Sound Vib., 406, 224 (2017)
  9. Oh JH, Kim JS, Nguyen VH, Oh IK, Compos. Part B Eng., 186, 107817 (2020)
  10. Wang Y, Zhang C, Ren L, Ichchou M, Galland MA, Polym. Compos., 34, 1847 (2013)
  11. Kim SK, Sung G, Gwon JG, Kim JH, Int. J. Precis. Eng. Manuf.-Green Technol., 3, 367 (2016)
  12. Choe H, Lee JH, Kim JH, Compos. Sci. Technol., 194, 108153 (2020)
  13. Zhang C, Li J, Hu Z, Zhu F, Huang Y, Mater. Des., 41, 319 (2012)
  14. Gwon JG, Kim SK, Kim JH, J. Porous Mat., 23, 465 (2016)
  15. Gwon JG, Kim SK, Kim JH, Mater. Des., 387, 448 (2015)
  16. Sung G, Kim JH, Compos. Sci. Technol., 146, 147 (2017)
  17. Choe H, Sung G, Kim JH, Compos. Sci. Technol., 156, 19 (2018)
  18. Baek SH, Choi HJ, Kim JH, Polym. Korea, 44, 91 (2020)
  19. Sung G, Choe H, Choi Y, Kim JH, Korean J. Chem. Eng., 35, 1045 (2018)
  20. Choi HJ, Kim JH, Polym. Korea, 45, 143 (2021)
  21. Cao B, Gu X, Song X, Jin X, Liu X, Liu X, Sun J, Zhang S, J. Appl. Polym. Sci., 134, 1 (2017)
  22. Zhang W, Zhang J, Ding Y, He Q, Lu K, Chen H, J. Clean Prod., 285, 125042 (2021)
  23. Schellenberg J, J. Cell. Plast., 46, 209 (2010)
  24. Choi HJ, Kim JH, J. Ind. Eng. Chem., 90, 260 (2020)
  25. Choi HJ, Choe H, Seo WJ, Kim JH, Polym. Korea, 43, 532 (2019)
  26. Kim JM, Kim DH, Kim J, Lee JW, Kim WN, Macromol. Res., 25, 190 (2017)