화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.112, 430-439, August, 2022
Designing kinetics of graphene composited multiscale porous carbon for advancing energy storage performance of supercapacitors
E-mail:, ,
Despite active research on supercapacitors to address the demand for high-power backup power systems, the energy storage performance of supercapacitors at high current densities has scope for improvement owing to the poor kinetics of active materials. In this study, multiscale porous carbon-based active materials were designed to improve the kinetics and power density of supercapacitors. These materials were fabricated by spinodal decomposition of a mixture comprising an epoxy resin, a curing agent, and a porogen, to which graphene was added to optimize the carbonaceous microstructure. The resultant material exhibited a wider pore-size distribution and considerably improved microstructure than commercial activated carbon (YP-50F). The charge-transfer resistance of the sample containing 3 wt.% graphene (A-EM3) was considerably lower than that of YP-50F owing to the microstructural improvement. Furthermore, the effective ionic conductivity of A-EM3 was approximately three times higher than that of YP-50F owing to enhanced mass transfer. A-EM3 exhibited a high specific capacitance (81.0 F g-1) at the highest current density (10.0 A g-1). Thus, spinodal decomposition and graphene addition are effective means to fabricate high-power-density supercapacitors.
  1. Qiao Y, Deng H, He P, Zhou H, Joule, 4, 1445 (2020)
  2. Lee BS, Wu Z, Petrova V, Xing X, Lim HD, Liu H, et al., J. Electrochem. Soc., 165(3), A525 (2018)
  3. Iro ZS, Subramani C, Dash S, Int. J. Electrochem. Sci., 11, 10628 (2016)
  4. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, et al., Nat. Rev. Mater., 5(1), 5 (2020)
  5. Partridge J, Abouelamaimen DI, Energies, 12, 2683 (2019)
  6. Yang H, A Review of Supercapacitor-based Energy Storage Systems for Microgrid Applications. Conference A Review of Supercapacitor-based Energy Storage Systems for Microgrid Applications. pp. 1-5.
  7. de Carvalho WC, Bataglioli RP, Fernandes RAS, Coury DV, Electr. Power Syst. Res., 184, 106287 (2020)
  8. Yin C, Wu H, Locment F, Sechilariu M, Energy Conv. Manag., 132, 14 (2017)
  9. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, PCCP, 13, 17615 (2011)
  10. Sun F, Wu D, Gao J, Pei T, Chen Y, Wang K, et al., J. Power Sources, 477, 228759 (2020)
  11. Bo Z, Wen Z, Kim H, Lu G, Yu K, Chen J, Carbon, 50, 4379 (2012)
  12. Yang C, Pan Q, Jia Q, Qi W, Jiang W, Wei H, et al., J. Alloy. Compd., 861, 157946 (2021)
  13. Tang Z, Pei Z, Wang Z, Li H, Zeng J, Ruan Z, et al., Carbon, 130, 532 (2018)
  14. Zhang Y, Sun QI, Xia K, Han BO, Zhou C, Gao Q, et al., ACS Sustainable Chem. Eng., 7(6), 5717 (2019)
  15. Daubert JS, Mundy JZ, Parsons GN, Adv. Mater. Interfaces, 3, 1600355 (2016)
  16. Chen LY, Hou Y, Kang JL, Hirata A, Chen MW, J. Mater. Chem. A, 2, 8448 (2014)
  17. Bai MH, Bian LJ, Song Y, Liu XX, ACS Appl. Mater. Interfaces, 6, 12656 (2014)
  18. Eftekhari A, Li L, Yang Y, J. Power Sources, 347, 86 (2017)
  19. Choi C, Lee JA, Choi AY, Kim YT, Lepró X, Lima MD, et al., Adv. Mater., 26(13), 2059 (2014)
  20. Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J, Nat. Commun., 8, 536 (2017)
  21. Fan H, Niu R, Duan J, Liu W, Shen W, ACS Appl. Mater. Interfaces, 8, 19475 (2016)
  22. Reece R, Lekakou C, Smith PA, ACS Appl. Mater. Interfaces, 12, 25683 (2020)
  23. Sun J, Ji J, Chen Z, Liu S, Zhao J, RSC Adv., 9, 33147 (2019)
  24. Nguyen AM, Irgum K, Chem. Mater., 18, 6308 (2006)
  25. Liang C, Dai S, Chem. Mater., 21, 2115 (2009)
  26. Meng Q, Jin J, Wang R, Kuan HC, Ma J, Kawashima N, et al., Nanotechnology, 25, 125707 (2014)
  27. Ma SB, Lee DJ, Roev V, Im D, Doo SG, J. Power Sources, 244, 494 (2013)
  28. Bang JH, Lee HM, An KH, Kim BJ, Appl. Surf. Sci., 415, 61 (2017)
  29. Forse AC, Merlet C, Allan PK, Humphreys EK, Griffin JM, Aslan M, et al., Chem. Mater., 27(19), 6848 (2015)
  30. Mi Y, Zhou W, Li Q, Zhang D, Zhang R, Ma G, et al., RSC Adv., 5(68), 55419 (2015)
  31. Wu L, Hoa SV, Minh-Tan, Ton-That, J. Appl. Polym. Sci., 99(2), 580 (2006)
  32. Czaderski C, Martinelli E, Michels J, Motavalli M, Compos. B Eng., 43, 398 (2012)
  33. Prolongo MG, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa RM, Prolongo SG, J. Therm. Anal. Calorim., 125, 629 (2016)
  34. Kim J, Lee N, Min YH, Noh S, Kim NK, Jung S, et al., ACS Omega, 3(12), 17789 (2018)
  35. Kim J, Yamada Y, Kawai M, Tanabe T, Sato S, J. Mater. Sci., 50, 6739 (2015)
  36. Xie Y, Sherwood PMA, Chem. Mater., 3, 164 (1991)
  37. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S, J. Mater. Sci., 48, 8171 (2013)
  38. Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S, J. Phys. Chem. C, 118, 7076 (2014)
  39. Shulga YM, Kabachkov EN, Korepanov VI, Khodos II, Kovalev DY, Melezhik AV, et al., Nanomaterials, 11, 1324 (2021)
  40. Lan X, Jiang X, Song Y, Jing X, Xing X, Green Process. Synth, 8, 837 (2019)
  41. Kim J, Yamada Y, Sato S, J. Phys. Chem. C, 118, 7085 (2014)
  42. Biswas B, Kandola BK, Horrocks AR, Price D, Polym. Degrad. Stabil., 92, 765 (2007)
  43. Sing KSW, Chemistry, 57, 603 (1985)
  44. Fu S, Fang Q, Li A, Li Z, Han J, Dang X, et al., Energy Sci. Eng., 9(1), 80 (2021)
  45. Lee HM, Chung DC, Jung SC, An KH, Park SJ, Kim BJ, Chem. Eng. J., 377, 120836 (2019)
  46. Li L, An B, Lahiri A, Wang P, Fang Y, Carbon, 65, 359 (2013)
  47. Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, et al., J. Power Sources, 97-98, 58 (2001)
  48. Kumar AV, Rao KR, Tetrahedron Lett., 52, 5188 (2011)
  49. To JWF, Chen Z, Yao H, He J, Kim K, Chou HH, et al., ACS Cent. Sci., 1(2), 68 (2015)
  50. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, et al., Nano Lett., 12(8), 3925 (2012)
  51. Hasegawa G, Kanamori K, Nakanishi K, Mater. Lett., 76, 1 (2012)
  52. Karamanova B, Stoyanova A, Shipochka M, Veleva S, Stoyanova R, Materials, 13, 2941 (2020)
  53. Romero A, Lavin-Lopez MP, Sanchez-Silva L, Valverde JL, Paton-Carrero A, Mater. Chem. Phys., 203, 284 (2018)
  54. López-Díaz D, López Holgado M, García-Fierro JL, Velázquez MM, J. Phys. Chem. C, 121, 20489 (2017)
  55. Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 032183 (2012)
  56. Boubiche N, El Hamouchi J, Hulik J, Abdesslam M, Speisser C, Djeffal F, et al., Diam. Relat. Mat., 91, 190 (2019)
  57. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS, Phys. Rep., 473, 51 (2009)
  58. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al., Phys. Rev. Lett., 97, 187401 (2006)
  59. Ferreira EHM, Moutinho MVO, Stavale F, Lucchese MM, Capaz RB, Achete CA, et al., Phys. Rev. B, 82, 125429 (2010)
  60. Li D, Zhan DA, Yan J, Sun C, Li Z, Ni Z, et al., J. Raman Spectrosc., 44(1), 86 (2013)
  61. Xia M, Su Z, Zhang S, AIP Adv., 2, 032122 (2012)
  62. Lee BS, Son SB, Park KM, Yu WR, Oh KH, Lee SH, J. Power Sources, 199, 53 (2012)
  63. Lee BS, Park KM, Yu WR, Youk JH, Macromol. Res., 20, 605 (2012)
  64. Tai Z, Zhang Q, Liu Y, Liu H, Dou S, Carbon, 123, 54 (2017)
  65. Portet C, Taberna PL, Simon P, Laberty-Robert C, Electrochim. Acta, 49, 905 (2004)
  66. Taberna PL, Simon P, Electrochemical Techniques, Supercapacitors. p. 111- 130.
  67. Zhou H, Liu C, Wu JC, Liu M, Zhang D, Song H, et al., J. Mater. Chem. A, 7(16), 9708 (2019)
  68. Lei C, Markoulidis F, Ashitaka Z, Lekakou C, Electrochim. Acta, 92, 183 (2013)
  69. Tsujioka N, Ishizuka N, Tanaka N, Kubo T, Hosoya K, J. Polym. Sci. A: Polym. Chem., 46, 3272 (2008)
  70. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)