화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.112, 423-429, August, 2022
Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide
E-mail:
Hydrogen sulfide (H2S) is the richest and stinkiest toxic gas found around coal mines, manholes, and semiconductor industries. However, there are not many studies on H2S detection around various industrial sites using wireless sensors. This study proposes an H2S wireless sensor system that communicates of the reader antenna and the sensor tag using 904 MHz activated radio frequency identification (RFID). The sensor tag is formed through an iron oxide-immobilized multiscale pore contained carbon nanofiber (Fe2O3-MPCNF)-based conductive paste. This wireless sensor tag has a large detection range (0.2 to 100 ppm) at 25 ℃, is very sensitive to H2S gas (0.2 ppm or less), and is inexpensive to process. In addition, the sensor tag has a long operating range (5–40 cm) and excellent flexibility, and has excellent cycle stability (up to 35 days), making it practical for wearable devices for wireless detection.
  1. Zhang Y, Fang J, Ye S, Zhao Y, Wang A, Mao Q, et al., Nat. Commun., 13, 1685 (2022)
  2. Abdi J, Hadipoor M, Esmaeili-Faraj SH, Vaferi B, Sci. Rep., 12, 4415 (2022)
  3. Raza M, Ma L, Yao S, Chen L, Ren W, Fuel, 305, 121591 (2021)
  4. Zhao Y, Song JG, Ryu GH, Ko KY, Woo WJ, Kim Y, et al., Nanoscale, 10, 9338 (2018)
  5. Carrero-Ferrer I, Molins-Legua C, Campíns-Falco P, Talanta, 245, 123449 (2022)
  6. Li Q, Sun M, Zhang L, Song H, Lv Y, Sens. Actuators B-Chem., 362, 131746 (2022)
  7. Liu M, Bao W, Feng X, Meng J, Liu S, Cui W, et al., Sens. Actuators B-Chem., 359, 131572 (2022)
  8. Arai S, Kikuhara T, Shimizu M, Horita M, Mater. Lett., 303, 130504 (2021)
  9. Shu J, Qiu Z, Lv S, Zhang K, Tang D, Anal. Chem., 89, 11135 (2017)
  10. Tian K, Wang XX, Yu ZY, Li HY, Guo X, ACS Appl. Mater. Interfaces, 9, 25559 (2017)
  11. Zheng X, Cai J, Cao Y, Shen L, Zheng Y, Liu F, et al., Appl. Catal. B: Environ., 297, 120402 (2021)
  12. Uesugi Y, Nagakawa H, Nagata M, ACS Omega, 7, 11946 (2022)
  13. Yan L, Gu QS, Jiang WL, Tan M, Tan ZK, Mao GJ, et al., Anal. Chem., 94, 5514 (2022)
  14. Wu H, Chen Z, Zhang J, Wu F, He C, Wang B, et al., J. Mater. Chem. A, 4, 1096 (2016)
  15. Abu-Hani AFS, Greish YE, Mahmound ST, Awwad F, Ayesh AI, Sens. Actuators B-Chem., 253, 677 (2017)
  16. Bodade AB, Bende AM, Chaudhari GN, Vacuum, 82, 588 (2008)
  17. Zhong Q, Zhang R, Yang B, Tian T, Zhang K, Liu B, ACS Sens., 7, 893 (2022)
  18. Xiong S, Yan S, Zhang L, Lv Y, Sens. Actuators B-Chem., 339, 129855 (2021)
  19. Ali A, Alzamly A, Greish YE, Bakiro M, Nguyen HL, Mahmoud ST, ACS Omega, 6, 17690 (2021)
  20. Zhang X, Jenkins GJ, Hakim CH, Duan D, Yao G, Sci. Rep., 12, 4788 (2022)
  21. Kim SG, Ryplida B, Giang NN, Lee G, Lee KD, Park SY, Chem. Eng. J., 426, 130880 (2021)
  22. Mackay RS, Nature, 204, 355 (1964)
  23. Messer H, Zinevich A, Alpert P, Science, 312, 713 (2006)
  24. Receveur RAM, Lindemans FW, Rooij NFD, J. Micromech. Microeng., 17, R50 (2007)
  25. Shi S, Jiang Y, Xu Q, Zhang J, Zhang Y, Li J, Xie Y, Cao ZP, Nano Energy, 97, 107150 (2022)
  26. Potyrailo RA, Surman C, Nagraj N, Burns A, Chem. Rev., 111, 7315 (2011)
  27. Tabata M, Ratanaporncharoen C, Ishihara N, Masu K, Sriyudthsak M, Kitasako Y, et al., Talanta, 235, 122718 (2021)
  28. Singh R, Singh E, Nalwa HS, RSC Adv., 7, 48597 (2017)
  29. Singh E, Meyyappan M, Nalwa HS, ACS Appl. Mater. Interfaces, 9, 34544 (2017)
  30. Lee JS, Oh J, Jun J, Jang J, ACS Nano, 9, 7783 (2015)
  31. Donno DD, Catarinucci L, Tarricone L, IEEE Sens. J., 14, 1048 (2014)
  32. Kim SG, Jun J, Lee JS, Jang J, J. Mater. Chem. A, 7, 8451 (2019)
  33. El-Shamy AG, Sens. Actuators B-Chem., 329, 129154 (2021)
  34. Duan Y, Pirolli L, Teplyakov AV, Sens. Actuators B-Chem., 235, 213 (2016)
  35. Bang JH, Mirzaei A, Choi MS, Han S, Lee HY, Kim SS, et al., Sens. Actuators B-Chem., 344, 130176 (2021)
  36. Moon S, Vuong NM, Lee D, Kim D, Lee H, Kim D, et al., Sens. Actuators B-Chem., 222, 166 (2016)
  37. Kim W, Lee JS, Jang J, RSC Adv., 8, 31874 (2018)
  38. Guo L, Wan K, Liu B, Wang Y, Wei G, Nanotechnology, 32, 442001 (2021)
  39. Zhou X, Wang Y, Gong C, Liu B, Wei G, Chem. Eng. J., 402, 129189 (2020)
  40. Balasubramani V, Sureshkumar S, Rao TS, Sridhar TM, ACS Omega, 4, 9976 (2019)
  41. Yang M, Zhang X, Cheng X, Xu Y, Gao S, Zhao H, et al., ACS Appl. Mater. Interfaces, 9, 26293 (2017)
  42. Mehta SS, Nadargi DY, Tamboli MS, Alshahrani T, Reddy VRM, Kim ES, et al., Sci. Rep., 11, 5023 (2021)
  43. Dang TK, Son NT, Lanh NT, Phuoc PH, Viet NN, Thong LV, et al., J. Alloy. Compd., 879, 160457 (2021)
  44. Peng L, Ying Q, Lili Z, Dahu Y, Haixiang S, Yingfei H, et al., Mar. Pollut. Bull., 93, 75 (2015)
  45. Kim SG, Jun J, Kim YK, Kim J, Lee JS, Jang J, et al., ACS Appl. Mater. Interfaces, 12, 20613 (2020)
  46. Kim SY, Lee S, Park S, Jo SM, Lee HS, Joh HI, Carbon, 94, 412 (2015)
  47. Ma J, Mei L, Chen Y, Li Q, Wang T, Xu Z, et al., Nanoscale, 5, 895 (2013)
  48. Virtanen J, Yang F, Ukkonen L, Elsherbeni AZ, Babar AA, Sydanheimo S, Sens. Rev., 34, 154 (2014)