Clean Technology, Vol.28, No.2, 182-192, June, 2022
Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production
E-mail:
This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.
- https://www.energy.gov/eere/solar/solar-energy-united-states“Solar Energy in the United States” (accessed Jan. 2022).
- http://www.caiso.com/informed/Pages/ManagingOversupply. aspx "California ISO - Managing Oversupply” (accessed Jan. 2022).
- https://world-nuclear.org/information-library/currentandfuture- generation/electricity-and-energy-storage.aspx "Electricity and Energy Storage” (accessed Jan. 2022).
- https://www.brookings.edu/research/wind-curtailment-inchina- and-lessons-from-the-united-states/ "Wind curtailment in China and lessons from the United States” (accessed Jan. 2022).
- Schaber C, Mazza P, Hammerschlag R, Electr. J., 17(6), 21 (2004)
- Poullikkas A, Renew. Sust. Energ. Rev., 27, 778 (2013)
- Burheim OS, “Hydrogen for Energy Storage”, in: Eng. Energy Storage, Elsevier, 147-192 (2017).
- Wulf C, Linßen, J., Zapp, P., “Review of power-to-gas projects in Europe”, in: Energy Procedia, Elsevier, 367-378 (2018).
- Clegg S, Mancarella P, IET Gener. Transm. Distrib., 10(3), 566 (2016)
- Quarton CJ, Samsatli S, Renew. Sust. Energ. Rev., 98, 302 (2018)
- DDwivedi SK, Vishwakarma M, Int. J. Hydrog. Energy, 43(46), 21603 (2018)
- https://afdc.energy.gov/fuels/natural_gas_production.html “Alternative Fuels Data Center: Natural Gas Production” (accessed Jan. 2022).
- https://www.eia.gov/energyexplained/natural-gas/where-ournatu ral-gas-comes-from.php "Where our natural gas comes from - U.S. Energy Information Administration (EIA)” (accessed Jan. 2022).
- Hou Y, Vidu R, Stroeve P, Ind. Eng. Chem. Res., 50(15), 8954 (2011)
- Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43(2), 631 (2014)
- Ager JW, Lapkin AA, Science, 360(6390), 707 (2018)
- Ursua A, Gandia LM, Sanchis P, Proc. IEEE, 100(2), 410 (2018)
- Mills GA, Catal. Rev.-Sci. Eng., 8, 159 (1974)
- Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276 (2016)
- Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A, Microscale Thermophys. Eng., 5, 17 (2001)
- Liu Z, Chu B, Zhai X, Jin Y, Cheng Y, Fuel, 95, 599 (2012)
- Brooks KP, Hu J, Zhu H, Kee RJ, Chem. Eng. Sci., 62, 1161 (2007)
- Glenk G, Reichelstein S, Nat. Energy, 4, 216 (2019)
- Winkler-Goldstein R, Rastetter A, Green, 3(1), 69 (2013)
- Gahleitner G, Int. J. Hydrog. Energy, 38(5), 2039 (2013)
- Bailera M, Lisbona P, Romeo LM, Espatolero S, Renew. Sust. Energ. Rev., 69, 292 (2017)
- Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D, Int. J. Hydrog. Energy, 40(12), 4285 (2015)
- Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
- https : / /www.aspentech.com/en/products/engineer ing/aspenplus “The Leading Process Simulation Software in the Chemical Industry” (accessed Jan. 2022).
- https://www.energy.gov/sites/prod/files/2016/09/f33/ CHP-Steam%20Turbine.pdf "Combined Heat and Power TechnologyFact Sheet Series” (accessed Jan. 2022).
- https://www.energy. gov/eere/fuelcells/doe-technical-targetshy drogen-production-electrolysis "DOE Technical Targets for Hydrogen Production from Electrolysis | Department of Energy” (accessed Jan. 2022).
- https://www.matche.com/equipcost/Reactor.html "Matches’ Reactor cost - autoclave, fermenter, kettle, mixer settler” (accessed Jan. 2022).
- Dutta A, Schaidle JA, Humbird D, Baddour FG, Sahir A, Top. Catal., 59, 2 (2016)
- Gorre J, Ortloff F, van Leeuwen C, Appl. Energy, 253, 113594 (2019)
- Böhm H, Zauner A, Rosenfeld DC, Tichler R, Appl. Energy, 264, 114780 (2020)
- Szima S, Cormos CC, Energies, 14, 1258 (2021)
- Mathiesen BV, Ridjan I, Connolly D, Nielsen MP, Hendriksen PV, Mogensen MB, Jensen SH, Ebbesen SD, “Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers”, (2013, accessed Jan. 2022).
- Jülch V, Appl. Energy, 183, 1594 (2016)
- Smolinka T, Günther M, Garche J, “Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien”, (2010, accessed Jan. 2022).
- Vanhoudt W, Barth F, Lanoix JC, Neave J, Patrick H, Schmidt R, Weindorf W, Zerhusen J, Michalski J, “Power-to-gas Short term and long term opportunities to leverage synergies between the electricity and transport sectors through power-to-hydrogen”, (2016)
- Brouwer J, “Realizing a Renewable Energy Future through Power-to-Gas California Fuel Cell Partnership”, (2017, accessed Jan. 2022).
- Lux B, Pfluger B, Appl. Energy, 269, 115011 (2020)
- Rozzi E, Minuto FD, Lanzini A, Leone P, Energies, 13, 420 (2020)
- Nicodemus JH, Energy Policy, 120, 100 (2010)