화학공학소재연구정보센터
Clean Technology, Vol.28, No.2, 117-122, June, 2022
Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구
Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace
E-mail:
초록
본 연구는 80 kW 연소로에서 초 저 NOx 버너를 개발하고 실험한 결과를 나타낸 것이다. 실험은 80 kW 단일 버너 연소로에서 진행되었으며, swirl number 변화, 총 당량비, 1차 / 2차 산화제 비율을 변경하여 진행하였다. 본 연구에서는 가스(LNG)를 보 조연료로 사용하여 NOx 생성량을 크게 감소 시킬 수 있었다. 화력발전소에서 석탄 연소 시 발생하는 NOx의 양은 약 300 ppm 이다. 그러나 본 연구에서 사용된 버너는 LNG를 혼소하여 NOx의 양을 40 ppm까지 감소 시킬 수 있었다. 1차 산화제의 투입 량이 보조 연료인 가스가 연소될 만큼만 사용하여 가스와 석탄을 동시에 투입하면 연소가스가 버너 출구에서 고온영역을 형 성하여 석탄을 휘발시키므로 N 탈휘발에 포함되어 배출된다. 그러므로 이 후 석탄이 연소 되면 석탄내 포함된 N이 거의 없기 때문에 NOx 생성량이 감소하는 것이다. 본 연구 결과를 바탕으로 실제 화력발전소 버너를 개발한다면 NOx 생성을 연소 초기 에 대량 감소시킬 수 있을 것으로 예상된다.
This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.
  1. Chae T, Clean Technol., 26(3), 211 (2020)
  2. Ahn K, Kim H, KSME Int. J., 16(7), 950 (2002)
  3. Van ALSGJ, Beesteheerde J, Int. J. Hydrog. Energy, 21(6), 445 (1996)
  4. Liming R, Jingxue A, Chunyu W, Lei W, Adv. Mater. Res., 1023, 116 (2014)
  5. Dutka M, Ditaranto M, Løvås T, Energies, 8, 3606 (2015)
  6. Chae T, J. Thermal Environ. Eng., 15(1), 54 (2020)
  7. Zhang Y, Xing Y, Chen S, “CFD investigation based on gas burner with low-NOx strategy of fuel-staging,” 2nd International Workshop on Renewable Energy and Development., (2018).
  8. Sorrentino G, Sabiab P, Bozzab P, Ragucci R, Joannonb M, Appl. Energy, 254, 676 (2019)
  9. Zhou H, Yang Y, Wang L, Particuology, 19, 133 (2015)
  10. Chae T, J. Korean Soc. Combust., 25(3), 48 (2020)
  11. Chae T, Lee J, Yang W, Ryu C, J. Mech. Sci. Technol., 30(8), 3861 (2016)
  12. Ryosuke M, Mamoru O, Isao I, Shingo S, Masahiro T, JSME Int. J., 49(2), 245 (2006)
  13. Antonio A, Bruno F, Alessandro I, Matteo C, Energy Procedia, 45, 1382 (2014)
  14. Marcin D, Mario D, Terese L, Energies, 8, 3606 (2015)
  15. Yu Z, Yuming X, Sheng C, “CFD investigation based on gas burner with low-NOx strategy of fuel-staging,”2018 2nd International Workshop on Renewable Energy and Development, 153 1-12 (2018).
  16. Masayoshi K, Michitaka I, Hisao M, Takashi K, Yoshihiko E, JSME Int. J., 41(4), 1071 (1998)
  17. Marco T, Francesco F, Bernardo F, Sergio M, Alessandro S, Energies, 10(1), 66 (2017)
  18. Torresi M, Fornarelli F, Fortunato B, Camporeale S, Saponaro A, Energies, 10(1), 66 (2017)
  19. Chen S, Xing Y, Li A, Appl. Therm. Eng., 112, 1487 (2017)
  20. Tian D, Zhong L, Tana P, Ma L, Fang Q, Zhang C, Zhang D, Chen G, Fuel Process. Technol., 138, 616 (2015)
  21. Ti S, Chen Z, Li Z, Zhang X, Zhang H, Zou G, Zeng L, Zhu Q, Appl. Therm. Eng., 86, 318 (2015)