화학공학소재연구정보센터
Clean Technology, Vol.28, No.2, 110-116, June, 2022
영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향
Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap
E-mail:
초록
본 연구에서는 NdFeB 영구자석 스크랩으로부터 회수한 철(Fe) 부산물을 이용하여 산화철(FeOx) 나노입자를 합성하였고, 열 처리 온도가 FeOx 나노입자의 물성에 미치는 영향을 관찰하였다. 이를 위해 D.I. water에 약 10 wt%로 희석한 철 부산물 용액 에 2.0 M 암모니아(NH4OH) 용액을 투여하여 산화철 전구체를 석출하였고, 이를 300 ℃, 400 ℃, 500 ℃ 및 600 ℃로 각각 열 처리하여 FeOx 나노 입자를 합성, 열처리 온도에 따른 FeOx 나노 입자의 물성을 관찰하였다. X-ray diffraction (XRD) 분석 결 과 열처리 온도가 증가할수록 <104> 회절 피크가 성장하여 500 ℃ 이상에서 α-Fe2O3 결정구조와 일치하는 회절 피크가 검출 되었다. BET (Brunauer-Emmett-Teller) 비표면적 분석 결과 400 ℃ 이상에서 열처리 온도가 증가할수록 비표면적이 감소하는 경향을 나타내었다. HRTEM (high resolution transmission electron microscope) 관찰 결과 rod 형 나노입자가 관찰되었고, 열 처리 온도 증가에 따라 나노입자의 크기가 증가하는 경향을 나타내었다.
In this study, iron oxide (FeOx) nanoparticles were synthesized using iron (Fe) by-products recovered from NdFeB permanent magnet scraps, and the effect of heat-treatment temperature on the physical properties of the FeOx nanoparticles was investigated. In order to prepare the FeOx nanoparticles, 2.0 M ammonia (NH4OH) solution was added to an iron by-product solution diluted to c.a. 10 wt% in D.I. water, which led to the precipitation of the iron oxide precursor. Then, the FeOx nanoparticles were synthesized by heat-treatment at 300 ℃, 400 ℃, 500 ℃ and 600 ℃. After that, the physical properties of the FeOx nanoparticles were investigated in order to understand the effect of the heat-treatment temperature. The results of the X-ray diffraction (XRD) analysis showed that the diffraction peak in accordance with the <104> direction increased as the heat-treatment i ncreased, a nd a d iffraction p eak i ndicating the α-Fe2O3 crystal structure was detected at heat-treatment temperatures above 500 ℃. The BET specific surface area analysis revealed that the specific surface area decreased as the heat-treatment temperature increased to above 400 ℃. Observation with a high resolution transmission electron microscope (HRTEM) showed that rod-shaped nanoparticles were formed, and the size of the nanoparticles showed a tendency to increase as the heat-treatment temperature increased.
  1. Lee SS, Lee NR, Kim KI, Hong TW, Clean Technol., 18(1), 69 (2012)
  2. Yi HC, Kang HY, Shim K, Kim J, Sim J, Clean Technol., 15(1), 23 (2009)
  3. Choi J, Chang TS, Kim BS, Clean Technol., 18(3), 229 (2012)
  4. Kim YW, Kim JB, Hwang YW, Park JH, Clean Technol., 18(1), 111 (2012)
  5. Park JW, Yi HC, Park MW, Sohn YT, Clean Technol., 18(4), 373 (2012)
  6. Kim K, Kim G, Lee H, Kang J, J. Kor. Inst. Resour. Recycl., 28(3), 26 (2019)
  7. Joya MR, J. Bar´on-Jaimez MR, Barba-Ortega J, J. Phys. Conf. Ser., 466, 012004 (2013)
  8. Ha Y, Gang RJ, Choi SH, Yoon HS, Ahn JG, J. Kor. Acad.-Ind. cooper. Soc., 13(12), 6187 (2012)
  9. Liu Z, Lv B, Wu D, Sun Y, Xu Y, Particuology, 11(3), 327 (2013)
  10. Shigeno E, Shimizu K, Seki S, Ogawa M, Shida A, Ide M, Sawada Y, Thin Solid Films, 411(1), 56 (2002)
  11. Mendelev MI, Srolovitz DJ, Model. Simul. Mater. Sci. Eng., 10(6), R79 (2002)