화학공학소재연구정보센터
Clean Technology, Vol.28, No.2, 97-102, June, 2022
Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium–Sulfur Batteries
E-mail:
Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.
  1. Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Swh ZW, Cai Q, Li W, Zhou G, Zu C, Cui Y, Nat. Commun., 7, 11203 (2016)
  2. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  3. Carter R, Oakes L, Muralidharan N, Cohn AP, Douglas A, Pint CL, ACS Appl. Mater. Interfaces, 9, 7185 (2017)
  4. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA, Angew. Chem.-Int. Edit., 50, 5904 (2011)
  5. She ZW, Li W, Cha JJ, Zheng G, Yang Y, Mcdowell MT, Hsu PC, Cui Y, Nat. Commun., 4, 1331 (2013)
  6. He Y, Chang Z, Wu S, Zhou H, J. Mater. Chem. A, 6, 6155 (2018)
  7. Liu Y, Zhao X, Chauhan GS, Ahn JH, Appl. Surf. Sci., 380, 151 (2016)
  8. Yang D, Zhou H, Liu H, Han B, iScience, 13, 243 (2019)
  9. Gao X, Huang Y, Gao H, Batool S, Lu M, Li X, Zhang Y, J. Alloy. Compd., 834, 155190 (2020)
  10. Li X, Cheng X, Gao M, Ren D, Liu Y, Guo Z, Shang C, Sun L, Pan H, ACS Appl. Mater. Inter., 9, 10717 (2017)
  11. Yang R, Liu S, Liu Y, Liu L, Chen L, Yu W, Yan Y, Feng Z, Xu Y, Ionics, 27, 165 (2021)
  12. Lee SY, Choi Y, Kim JK, Lee SJ, Bae JS, Jeong ED, J. Ind. Eng. Chem., 94, 272 (2021)
  13. Xue M, Lu W, Chen C, Tan Y, Li B, Zhang C, Mater. Res. Bull., 112, 269 (2019)
  14. Shaukat RA, Saqib QM, Khan MU, Chougale MY, Bae J, Energy Rep., 7, 724 (2021)
  15. Cubitto MA, Gentili AR, Bioremediat. J., 19, 277 (2015)
  16. Liu Y, Li X, Sun Y, Yang R, Lee Y, Ahn JH, J. Alloy. Compd., 853, 157316 (2021)
  17. Liu Y, Li X, Sun Y, Yang R, Lee Y, Ahn JH, Ionics, 27, 199 (2021)
  18. Zhou J, Guo Y, Liang C, Yang J, Wang J, Nuli Y, Electrochim. Acta, 273, 127 (2018)
  19. Li Z, Yuan L, Yi Z, Sun Y, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z, Huang Y, Adv. Energy Mater., 4, 1301473 (2014)
  20. Liu Y, Li X, Sun Y, Heo J, Lee Y, Lim DH, Ahn HJ, Cho KK, Yang R, Ahn JH, Sci. Adv. Mater., 12, 1627 (2020)