화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.8, 1999-2009, August, 2022
Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas
E-mail:
In steel manufacturing plants, blast furnace gas is generated from a furnace in which steel ore, coke and limestone are heated and melted. It is commonly used to produce electricity or released to the atmosphere in general; however, it can be utilized as a carbon source to produce C1 value-added chemicals. In this study, we propose two production schemes for methanol production and co-production of methanol and ammonia from blast furnace gas. Both cases were simulated using Aspen Plus V12 and economics was evaluated using Aspen Process Economic Analyzer (APEA). As a result, the methanol production case produced 99.4 wt% 232 t/day of methanol and the co-production case produced 97.7 wt%, 453.4 t/day of ammonia and 99.8 wt%, 263 t/day of methanol. The total annual cost of the methanol production case is US 121.6M$/y and US 222.1M$/y at the co-production case. The NPVs are -810.4M$ in the methanol production case and -981.3M$ in the co-production case, respectively. By sensitivity analysis, it is shown that the co-production case can be more economically feasible in the aspect of NPV when the raw material cost decreases 30%.
  1. IEA, Global Energy & CO2 Status Report 2019, IEA, Paris (2019).
  2. Rosenfeld DC, Lehner M, Renew. Energy, 147, 1511 (2020)
  3. Liu W, Yang F, Int. J. Hydrog. Energy, 46, 10548 (2021)
  4. Cavaliere P, Clean ironmaking and steelmaking processes, Springer, Lecce, Italy (2019).
  5. Jiang K, Ashworth P, Angus D, Renew. Sust. Energ. Rev., 119, 109601 (2020)
  6. Leonzio G, J. CO2 Util., 27, 326 (2018)
  7. Tamboli AH, Kim H, Chem. Eng. J., 323, 530 (2017)
  8. Artz J, Leitner W, Chem. Rev., 118, 434 (2018)
  9. Cuéllar-Franca RM, Azapagic A, J. CO2 Util., 9, 82 (2015)
  10. Lee JK, Lee IB, Han J, J. Ind. Eng. Chem., 75, 77 (2019)
  11. Chen WH, Du SW, Energy, 86, 758 (2015)
  12. Soto WU, Falk L, Renew. Sust. Energ. Rev., 74, 809 (2017)
  13. Zheng W, Zeng W, Fuel, 302, 121100 (2021)
  14. GlobeNewswire, https://www.globenewswire.com/news-release/2021/ 06/25/2253193/28124/en/Global-Methanol-Market-2021-to-2026- Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts. html (2021).
  15. Methanol institute, https://www.methanol.org/methanol-price-supply- demand/ (2021).
  16. Lee B, Lim H, Appl. Energy, 279, 115827 (2020)
  17. Fortes MP, Tzimas E, Appl. Energy, 161, 718 (2016)
  18. Shin S, Lee IB, Energy, 200, 117506 (2020)
  19. Meunier N, Weireld GD, Renew. Energy, 146, 1192 (2020)
  20. Bermúdez JM, Menéndez JA, Fuel, 89, 2897 (2010)
  21. Kim D, Han J, Energy, 198, 117355 (2020)
  22. U.S. Geological Survey, Mineral Commodity Summaries 2019, Reston, VA, USA (2019).
  23. Grand View Research, https://www.grandviewresearch.com/industry-analysis/ammonia-market (2017).
  24. Osman O, Sleptchenko A, J. Clean Prod., 271, 121627 (2020)
  25. Koohestanian E, Samimi A, Energy, 144, 279 (2018)
  26. Pawar ND, Stolten D, Int. J. Hydrog. Energy, 46, 27247 (2021)
  27. AspenTech®, https://lms.nchu.edu.tw/sysdata/doc/1/196bb4d4fac4 c3d7/pdf.pdf (2018).
  28. Kalbani HA, Wang H, Appl. Energy, 165, 809 (2016)
  29. Matzen M, Demirel Y, Energy, 93, 1 (2015)
  30. Alarifi A, Croiset E, Ind. Eng. Chem. Res., 55, 1164 (2016)
  31. Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43, 3185 (1988)
  32. Nyári J, Aarnio AS, J. CO2 Util., 39, 101106 (2020)
  33. Spath PL, Dayton DC, NREL, Golden (CO, USA) (2003).
  34. Encyclopedia Britannica, https://www.britannica.com/technology/Haber-Bosch-process (2020).
  35. Christiansen LJ, Ammonia: Catalysis and manufacture, Springer-Verlag, Lyngby, Denmark (1995).
  36. Lim YI, Choi J, Moon HM, Kim G, Korean Chem. Eng. Res., 54, 3 (2016)
  37. Ruthven DM, Farooq S, Knaebel KS, Pressure swing adsorption, Wiley, New York, USA (1994).
  38. Zhang C, Kang SC, Fuel, 157, 285 (2015)
  39. Peters MS, Timmerhaus K, West R, Plant design and economics for chemical engineers, McGraw-Hill Professional, New York, USA (2002).
  40. Turton RA, Analysis, synthesis, and design of chemical processes, Prentice Hall, Hoboken, New Jersey, USA (2003).
  41. Chemical engineering, https://www.chemengonline.com (2021).
  42. Seider WD, Seader JD, Product and process design principles, Wiley, New York, USA (2010).
  43. The Engineering ToolBox, https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html (2021).
  44. METGroup, https://group.met.com/en/media/energy-insight/calorific-value-of-natural-gas (2021).
  45. Ebrahimi A, Ziabasharhagh M, Energy, 126, 868 (2017)
  46. Alege FP, Ndegwa PM, J. Clean Prod., 310, 127481 (2021)
  47. Bellotti D, Magistri L, Energy Procedia, 158, 4721 (2019)
  48. Schnitkey G, Weekly Farm Economics. 178 (2018).
  49. Douglas JM, Conceptual design of chemical processes, McGraw- Hill New York, USA (1988).