화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.9, 2368-2378, September, 2022
H2S adsorption performance of alkali lignocarbon/PVA composite membrane
E-mail:,
In this work, lignin carbon-based membranes were prepared for H2S adsorption. Alkali lignin was carbonized to obtain alkali lignocarbon (CLA). Using the CLA and polyvinyl alcohol (PVA) as raw materials, glycerol and water as plasticizers, and nano-CuO and Cu2+ as dopants, CLA/PVA, CuO-CLA/PVA-1, and Cu-CLA/PVA-2 composite membranes were prepared by solution casting method. The structures of these membranes and their H2S adsorption properties were then analyzed. The results show that with a membrane solution water-alcohol ratio of 3 : 1 and 2 wt% CLA content, the prepared CLA/PVA membrane can adsorb H2S for 30 min. The CuO-CLA/PVA-1 and Cu- CLA/PVA-2 membranes, which were obtained after doping with nano-CuO and Cu2+, demonstrate significantly improved deodorization performance compared with that of CLA/PVA. The Cu-CLA/PVA-2 membrane can adsorb H2S for up to 75min and also demonstrates better mechanical properties. The H2S adsorption capacity of this membrane is up to 0.27 mol/kg. Structural analysis shows that the veneers of the three composite membranes are smooth and that doped copper is evenly distributed in the membranes as nano-CuO. The surface functional groups of the CLA/PVA, CuO-CLA/PVA-1, and Cu-CLA/PVA-2 membranes are similar and play a positive role in H2S adsorption. Nano-CuO is the main active site for H2S adsorption in the Cu-containing composite membranes.
  1. Yang Q, Li Y, Cui B, Yang ZQ, Liu ZB, Peng YZ, Acta Sci. Circumst., 39(07), 2079 (2019)
  2. Barelli L, Bidini G, Micoli L, Sisani E, Turco M, Energy, 160, 44 (2018)
  3. Ma X, Lin BK, Wei X, Kniep J, Lin YS, Ind. Eng. Chem. Res., 52(11), 4297 (2013)
  4. Mahdyarfar M, Mohammadi T, Mohajeri A, New Carbon Materials, 28(1), 39 (2013)
  5. Lightfoot EN, Root TW, O'Dell JL, Biotechnol. Prog., 24(3), 599 (2008)
  6. Wang F, Research on the controllable preparation and functional modification of gas separation carbon membranes, MA thesis, Shenyang University of Technology, Shenyang (2020).
  7. Sim YH, Wang H, Li FY, Chua ML, Chung TS, Toriida M, Tamai S, Carbon, 53, 101 (2012)
  8. Somsesta N, Sricharoenchaikul V, Aht-Ong D, Mater. Chem. Phys., 240, 122221 (2020)
  9. Liu Y, Xia JJ, Lin JY, Zhang Y, Tong ST, Chin. J. Environ. Eng., 10(11), 6171 (2016)
  10. Wang XC, Zhang FF, Jiang TT, J. Funct. Mater., 45(11), 11001 (2014)
  11. Zeng MS, She YQ, Hu YB, Wu LJ, Yuan MJ, Qi Y, Wang H, Lin XL, Qin YL, Chem. Ind. Eng. Prog., 40(08), 4573 (2021)
  12. Yue XP, Chen FG, Zhou XS, BioResources, 6(2), 2022 (2011)
  13. Liu S, Wei W, Wu S, Zhang F, J. Porous Mat., 27(5), 1523 (2020)
  14. Zhang T, Shen Q, J. Cellul. Sci. Technol., 4, 19 (2004)
  15. Zhong L, Preparation and propertiesresearch of pore-size controllable carbonmembrane, MA thesis, Donghua University, Shanghai (2006).
  16. Tran CD, Ho HC, Keum JK, Chen J, Gallego NC, Naskar AK, Energy Technol., 5(11), 1927 (2017)
  17. Li YJ, Li F, Yang Y, Ge BC, Meng FZ, J. Polym. Eng., 41(4), 245 (2021)
  18. Pang J, Preparation and capacitive performance of sodium lignosulfonate based porous carbons, DE thesis, China University of Mining and Technology, Beijing (2018).
  19. Wang XC, Zhang FF, Qiang TT, J. Funct. Mater., 45(11), 11001 (2014)
  20. Zhua JD, Yan CY, Zhang X, Yang C, Jiang MJ, Zhang XW, Prog. Energy Combust. Sci., 76, 360 (2020)
  21. Aadil KB, Jha H, Iran. Polym. J., 25(8), 661 (2016)
  22. Korbagv I, Saleh SM, Int. J. Environ. Stud., 73(2), 226 (2016)
  23. Zhou C, Li PW, Qu YH, Yang ZM, He ZY, Wang C, Liu YH, Song SH, Yu LJ, Chin. Polym. Bull., 2, 9 (2021)
  24. Li CY, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Jiang Z, Energy Environ. Sci., 7(4), 1489 (2014)
  25. Wang HX, Wang YY, Hu Z, Bai Y, Xiao TPF, China Synth. Resin Plast., 37(04), 28 (2020)
  26. Zhao Y, Ho WW, Ind. Eng. Chem. Res., 52(26), 8774 (2013)
  27. Shi CP, Hao XH, Li F, Li HM, Sun M, Packaging J., 3(01), 62 (2011)
  28. Montes D, Tocuyo E, González E, Rodríguez D, Solano R, Atencio R, Moronta A, Microporous Mesoporous Mater., 168, 111 (2013)
  29. Koteswararao J, Satyanarayana SV, Madhu GM, Venkatesham V, Heliyon, 5(6), e01851 (2019)
  30. Al-Tayyar NA, Youssef AM, Al-Hindi RR, Food Packaging and Shelf Life, 25, 100523 (2020)
  31. Liu X, Chen X, Ren J, Chang M, He B, Zhang C, Int. J. Biol. Macromol., 132, 978 (2019)
  32. Jayakumar A, Heera KV, Sumi TS, Joseph M, Mathew S, Praveen G, Radhakrishnan EK, Int. J. Biol. Macromol., 136, 395 (2019)
  33. Bunmechimma L, Leejarkpai T, Riyajan SA, Carbohydr. Polym., 240, 116215 (2020)
  34. Gao Y, Shi XR, Liu WL, Wang WX, Shen YF, Chen J, Acta. Mater. Compos. Sin., 33(01), 53 (2016)
  35. Sitthikhankaew R, Predapitakkun S, Kiattikomol RW, Pumhiran S, Assabumrungrat S, Laosiripojana N, EnergyProcedia, 9, 15 (2011)
  36. Li Y, Wang LJ, Fan HL, Shangguan J, Wang H, Mi J, Energy Fuels, 29, 298 (2015)
  37. Li F, Meng F, Wang H, Ge B, Zhang Y, Yu C, New. J. Chem., 43(44), 17494 (2019)
  38. Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM, J. Mater. Sci., 50(21), 7064 (2015)
  39. Wang WL, Li DS, Wang ZJ, Cui HL, Xue GL, Chin. J. Inorg. Chem., 18(8), 823 (2002)
  40. Matsushima T, Kinoshita Y, Murata H, Appl. Phys. Lett., 91(25), 253504 (2007)