화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.111, 490-498, July, 2022
3D wet-spinning printing of wearable flexible electronic sensors of polypyrrole@polyvinyl formate
E-mail:
Polymer based 3D printings are generally generated from the melt fluids or gels instead of polymer solution. Inspired by continuous wet-spinning of polymer fiber, we explored a new polyvinyl formate (PVFm) printing ink which was directly coagulated by water and mold into designed 3D elastic architectures layer-by-layer. The degree of esterification (DE), chemical structure, morphology, and mechanical properties of PVFm were all investigated. Furthermore, 3D PVFm was coated by polypyrrole (PPy) via in-situ polymerization to fabricate wearable flexible electronic sensors. The relative resistance changes and sensitivity of PPy@PVFm on monitoring physical strain and pressure were characterized. Results show that PPy@PVFm could stably and sensitively recognize human body activities through relative changes in resistance in a wide range of linear relationship. Therefore, a new protocol is readily to realize a strategy of 3D wet-spinning printing and wearable flexible electronic sensors.
  1. Ivanova O, Williams C, Campbell T, Rapid Prototyping J., 19, 353 (2013)
  2. Mohamed O, Masood S, Bhowmik J, Adv. Manuf., 3, 42 (2015)
  3. Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, et al., J. Clean Prod., 135, 1559 (2016)
  4. Liu R, Wang Z, Sparks T, Liu F, Newkirk J, Laser Addit. Manuf., 1, 351 (2017)
  5. Uriondo A, Esperon-Miguez M, Perinpanayagam S, Proc. IMechE Part G: J. Aerospace Engineer., 1 (2015)
  6. Hao Y, Li S, Yang R, Rare Metals, 35, 661 (2016)
  7. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, et al., J. Mater. Sci., 49, 6143 (2014)
  8. Parthasarathy J, Starly B, Raman S, J. Manuf. Process, 13, 160 (2011)
  9. Mohammad V, Yang S, Virtual Phys. Prototy, 10, 123 (2015)
  10. Rajasekharan AK, Gyllensten C, Blomstrand E, Liebi M, Andersson M, ACS Nano, 14, 241 (2020)
  11. Shen Y, Tang H, Huang X, Huang R, et al., Carbohydr. Polym., 235, 115970 (2020)
  12. Slavcheva GS, Artamonova OV, Shvedova MA, Britvina EA, Inorg. Mater., 57, 94 (2021)
  13. Schutter GD, Lesage K, Mechtcherine V, Nerella NV, Habert G, Agusti-Juan I, Cem. Concr. Res., 112, 25 (2018)
  14. Panda B, Unluer C, Tan MJ, Compos. Part B-Eng., 176, 107290 (2019)
  15. Wang H, Zeng L, Pang L, Wang H, et al., Chem. Eng. J., 396, 125081 (2020)
  16. Hausmann MK, Siqueira G, Libanori R, et al., Adv. Funct. Mater., 30, 1904127 (2019)
  17. Song KH, Highley CB, Rouff A, Burdick JA, Adv. Funct. Mater., 28, 1801331 (2018)
  18. Farahani RD, Dubé M, Therriault D, Adv. Mater., 28, 5794 (2016)
  19. Kong YL, Gupta MK, Johnson BN, Mcalpine MC, Nano Today, 11, 330 (2016)
  20. Cuan-Urquizo E, Barocio E, Tejada-Ortigoza V, Pipes RB, Rodriguez CA, Roman-Flores A, Mater, 12, 895 (2019)
  21. Sood AK, Ohdar RK, Mahapatra SS, Mater. Des., 31, 287 (2010)
  22. Schmitz DP, Ecco EG, Dul S, Pereira ECL, Soares BG, Barra GMO, et al., Mater. Today Commun., 15, 70 (2018)
  23. Prashantha K, Roger F, J. Macromol. Sci.-Pure Appl. Chem., 54, 24 (2017)
  24. Cao XF, Xuan SH, Gao YD, Lou CC, Deng HX, Gong XL, Adv. Sci., 2200898 (2022)
  25. Zhang D, Chi BH, Li BW, Gao ZW, Du Y, Guo JB, et al., Synth. Met., 217, 79 (2016)
  26. Chen YQ, Mangadlao JD, Wallat J, Leon AD, Pokorski JK, Advincula RC, et al., Mater. Interfaces, 9, 4015 (2017)
  27. Lewis JA, Curr. opin. Solid State Mat. Sci., 6, 245 (2002)
  28. Smay JE, Gratson GM, Shepherd RF, Cesarano J III, Lewis JA, Adv. Mater., 14, 1279 (2010)
  29. Feilden E, Blanca EGT, Giuliani F, Saiz E, Vandeperre L, J. European Ceram. Soc., 36, 2525 (2016)
  30. Tang ZH, Jia SH, Zhou CH, Li B, A.C.S. Appl, Mater. Interfaces, 12, 28669 (2020)
  31. Tian K, Bae J, Bakarich SE, Yang CH, Gately RD, et al., Adv. Mater., 29, 20160482 (2017)
  32. Wei PR, Leng HM, Chen QY, Advincula RC, Pentzer EB, A.C.S. Appl. Polym. Mater., 1, 885 (2019)
  33. Cataldi A, Rigotti D, Nguyen V, Pegoretti A, Mater. Today Commun., 15, 236 (2018)
  34. Goyanes A, Kobayashi M, Martínezpacheco R, Gaisford S, Basit AW, Int. J. Pharm., 514, 290 (2016)
  35. Angjellari M, Tamburri E, Montaina L, Natali M, Passeri D, et al., Mater. Des., 119, 12 (2017)
  36. Sun X, Wang Q, Wang H, Chen L, Constr. Build. Mater., 247, 118590 (2020)
  37. Yang L, Chen Y, Wang M, Shi S, Jing J, Ind. Eng. Chem. Res., 59, 8066 (2020)
  38. Jiang P, Lin P, Yang C, Qin H, Zhou F, Chem. Mater., 32, 9983 (2020)
  39. Lo CY, Zhao YS, Kim C, Alsaid Y, Khodambashi R, et al., Mater Today, 50, 35 (2021)
  40. Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F, Adv. Sci., 2108932 (2022)
  41. Li YT, Lou Q, Yang JM, Cai KF, Liu Y, et al., Adv. Funct. Mater., 32, 2106902 (2021)
  42. Jiang QQ, Ma XL, Chai YQ, Ma H, et al., ACS Appl. Mater Interfaces, 13, 5425 (2021)
  43. Yang CF, Li LL, Zhao JX, Wang JJ, et al., ACS Appl. Mater Interfaces, 10, 25811 (2018)
  44. Liu LY, Hua Q, Renneckar S, Green Chem., 21, 3682 (2019)
  45. Zhu C, Guo D, Ye D, Jiang S, Huang YA, A.C.S. Appl, Mater. Interfaces, 12, 37354 (2020)
  46. Lai C, Yu S, A.C.S. Appl, Mater. Interfaces, 12, 34235 (2020)
  47. Sun QJ, Zhao XH, Yeung CC, Tian Q, Roy V, A.C.S. Appl. Mater. Interfaces, 12, 37239 (2020)
  48. Fang H, Wang JH, Li L, et al., Chem. Eng. J., 356, 153 (2019)
  49. Gao FF, Du X, Hao XG, Li SS, et al., Chem. Eng. J., 328, 293 (2017)
  50. Haleem N, Khattak A, Jamal Y, Sajid M, et al., Renew. Sust. Energ. Rev., 157, 112019 (2022)
  51. Bahcegul EG, Bahcegul E, Ozkan N, A.C.S. Appl Mater. Interfaces, 2, 2622 (2020)
  52. Yang H, Leow WR, Chen XD, Small Methods, 2, 1700259 (2017)
  53. Yin XY, Zhang Y, Xiao J, Moorlag C, Yang J, Adv. Funct. Mater., 29, 1904716 (2019)
  54. Zhou Q, Ji B, Chen G, Ding YK, et al., ACS Appl. Nano Mater., 2, 7178 (2019)
  55. Wu Q, Qiao YC, Guo R, Naveed S, et al., ACS Nano, 14, 10104 (2020)