Korean Journal of Chemical Engineering, Vol.39, No.8, 2069-2079, August, 2022
Multi-objective optimization of microchannel heat sink with Cantor fractal structure based on Pareto genetic algorithm
E-mail:
Microchannel heat sinks have been widely used in high-density packaged electronic device cooling technology. We combined the cantor fractal structure with the microchannel heat sink to design a new type of microchannel structure. Combining fractal structure with microchannel heat sink is one of the cutting-edge technologies of heat transfer to solve the heat dissipation problem of high heat flux electronic equipment. We chose the width-to-height ratio of the microchannel inlet (a/b), the width-to-height ratio of the Cantor fractal baffle (B/h) and the ratio of the microchannel inlet width and the distance between each group of baffles (a/λ) as design variables, and the optimization objective was to make the global thermal resistance and pump work minimum. First, the pressure drops, temperature, and velocity of the microchannel heat sink were analyzed. Then, to consider the fluid heat transfer and pressure drop comprehensively, the enhanced heat transfer factor PEC was used to evaluate the comprehensive heat transfer performance of the microchannel. The final optimized structure PEC values were all greater than 1. In the Reynolds number (Re) range of 100-500, its enhanced heat transfer factor PEC is 1.56-1.79, which indicates that the heat transfer effect of the optimized microchannel heat sink is greatly enhanced than that of the conventional microchannel.
Keywords:Cantor Fractal;Multi-objective Optimization;Pareto Genetic Algorithm;Microchannel Heat Sink
- Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji DD, Ranjbar AA, Case. Stud. Therm. Eng., 13, 100356 (2019)
- Ghobadi AH, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4262 (2019)
- Gholinia M, Moosavi SK, Pourfallah M, Gholinia S, Ganji DD, Int. J. Amb. Energy, 42, 1815 (2021)
- Rahimi-Gorji M, Van de Sande L, Debbaut C, Ghorbaniasl G, Braet H, Cosyns S, Ceelen W, Adv. Drug Deliv. Rev., 160, 105 (2020)
- Anastasiou E, Lorentz KO, Stein GJ, Mitchell PD, Lancet. Infect. Dis., 14, 553 (2014)
- Gholinia M, Hosseinzadeh K, Ganji DD, Case. Stud. Therm. Eng., 21, 100666 (2020)
- Gholinia M, Ranjbar AA, Javidan M, Hosseinpour AA, Energy Rep., 7, 6844 (2021)
- Dewan A, Srivastava P, J. Therm. Sci., 24, 203 (2015)
- Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A, Exp. Therm. Fluid. Sci., 91, 509 (2018)
- Garimella SV, Singhal V, Heat. Transfer. Eng., 25, 15 (2004)
- Mohammed HA, Gunnasegaran P, Shuaib NH, Int. Commun. Heat Mass Transf., 38, 474 (2011)
- Gholinia M, Moosavi SAHK, Gholinia S, Ganji DD, Heat. Transf. Asian. Res., 48, 3278 (2019)
- Ghobadi AH, Armin M, Hassankolaei SG, Hassankolaei MG, Int. J. Amb. Energy, 41, 1 (2020)
- Gholinia M, Armin M, Ranjbar AA, Ganji DD, Case. Stud. Therm. Eng., 14, 100490 (2019)
- Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD, J. Taiwan. Inst. Chem. E., 97, 12 (2019)
- Yagodnitsyna AA, Kovalev AV, Bilsky AV, J. Phys. Confer., 899, 032026 (2017)
- Kumar P, Int. J. Therm. Sci., 136, 33 (2019)
- Xu M, Lu H, Gong L, Chai JC, Duan X, Int. Commun. Heat Mass Transf., 76, 348 (2016)
- Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. Commun. Heat Mass Transf., 53, 2760 (2010)
- Mohammed HA, Gunnasegaran P, Shuaib NH, Int. Commun. Heat Mass Transf., 38, 63 (2011)
- Chai L, Xia G, Wang L, Zhou M, Cui Z, Int. J. Heat Mass Transf., 62, 741 (2013)
- Xia G, Chai L, Zhou M, Wang H, Int. J. Therm. Sci., 50, 411 (2011)
- Chai L, Xia GD, Wang HS, Int. J. Heat Mass Transf., 97, 1069 (2016)
- Chai L, Xia GD, Wang HS, Int. J. Heat Mass Transf., 97, 1091 (2016)
- Garg H, Negi VS, Wadhwa AS, Lall AK, RAECS, 1 (2014)
- Wang G, Chen T, Tian M, Ding G, Int. J. Heat Mass Transf., 148, 119142 (2020)
- Ghani IA, Sidik NAC, Mamat R, Najafi G, Ken TL, Asako Y, Japar WMAA, Int. J. Heat Mass Transf., 114, 640 (2017)
- Chai L, Xia G, Zhou M, Li J, Qi J, Appl. Therm. Eng., 51, 880 (2013)
- Shi Z, Dong T, Energy Conv. Manag., 94, 493 (2015)
- Zhang J, Zhao Y, Diao Y, Zhang Y, Int. J. Heat Mass Transf., 84, 511 (2015)
- Ambreen T, Kim MH, Int. J. Heat Mass Transf., 120, 490 (2017)
- Manay E, Akyürek EF, Sahin B, Results. Phys., 9, 615 (2018)
- Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD, Heat. Transf. Asian. Res., 48, 744 (2019)
- Ghobadi AH, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4133 (2019)
- Hosseinzadeh K, Afsharpanah F, Zamani S, Gholinia M, Ganji DD, Case. Stud. Therm. Eng., 12, 228 (2018)
- Khandouzi O, Pourfallah M, Yoosefirad E, Shaker B, Gholinia M, Mouloodi S, J. Energy Storage., 37, 102464 (2021)
- Shahlaei S, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4152 (2019)
- Li J, Peterson GP, Int. J. Heat Mass Transf., 50, 2895 (2007)
- Chen Y, Fu P, Zhang C, Shi M, Int. J. Heat Fluid Flow, 31, 622 (2010)
- Mohd-Ghazali N, Jong-Taek O, Chien NB, Kwang-Il C, Zolpakar NA, Ahmad R, Energy Procedia, 61, 55 (2014)
- Adham AM, Mohd-Ghazali N, Ahmad R, Arab. J. Sci. Eng., 39, 7211 (2014)
- Lv H, Chen X, Zeng X, Chaos. Soliton. Fract., 148, 111048 (2021)
- Cheng KX, Foo ZH, Ooi KT, Int. Commun. Heat Mass Transf., 111, 104456 (2020)
- Yun JY, Lee KS, Int. J. Heat Mass Transf., 43, 2529 (2000)
- Liu Y, Cui J, Li W, Zhang N, J. Heat Transf. -Trans. ASME, 133, 12 (2011)
- Alperen Y, Sertac C, Int. J. Heat Mass Transf., 146, 118847 (2020)