화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.3, 296-301, June, 2022
PDMS 코팅을 통한 지르코늄 기반 금속유기골격체의 고습 환경에서 DIMP 흡착 성능 지속성 개선
Improving the DIMP Sorption Capacity Durability of Zirconium Based Metal-Organic Frameworks Coated with Polydimethylsiloxane at High Humidity
E-mail:
초록
UiO-66과 같은 지르코늄 기반 금속유기골격체(Zr-MOFs)는 비표면적이 넓고 선택적 흡착 능력이 뛰어나 전장환경에서 화학작용제 방호 물질로써 주목받고 있다. 하지만 대부분의 금속유기골격체는 약한 금속-유기 리간드 결합과 공극의 존재로 인하여 대기 중에 노출 시 물 분자와의 반응으로 선택적 흡착 성능이 저하되는 문제점이 있다. 이에 본 연구에 서는 대표적인 소수성 고분자 물질인 폴리디메틸실록산(PDMS)을 지르코늄 기반 금속유기골격체인 UiO-66 표면에 코 팅하였고, 전장환경에서 적용 가능성을 평가하기 위해 고습 환경에서 diisopropyl methylphosphonate (DIMP)와 같은 유 사 화학작용제의 흡착 성능 지속성을 코팅 전과 비교하였다. PDMS를 코팅한 UiO-66의 표면 구조와 유기 작용기 분포 를 분석한 결과 실리콘이 고르게 도포된 것을 확인하였으며, 접촉각을 측정한 결과 PDMS를 코팅한 UiO-66에서 30° 이상 접촉각이 증가하여 소수성이 증대한 것을 확인하였다. 또한 UiO-66과 PDMS를 코팅한 UiO-66을 흡착제로 사용 하여 고습 환경에서 유사 화학작용제인 DIMP의 흡착 성능 지속성을 확인한 결과 PDMS를 코팅한 UiO-66가 기존의 UiO-66에 비하여 높은 DIMP 흡착 성능 지속성을 나타내는 것을 알 수 있었다.
Due to the fact that zirconium based metal-organic frameworks (Zr-MOFs), such as UiO-66, have a large specific surface area and excellent selective adsorption capacity, Zr-MOFs are gaining attention as materials that can provide protection from the attack of chemical warfare agents in battleground. However, most of the metal-organic frameworks have an issue of selective adsorption capacity degraded by water molecules when exposed to the atmosphere, because of the weak metal-organic ligand bonds and the presence of voids. Therefore, polydimethylsiloxane (PDMS), a representative hydrophobic polymer material, was coated on the surface of UiO-66 to enhance the sustainability of the diisopropyl methylphosphonate (DIMP) sorption capacity in the battleground condition. Through the analysis of surface structure and organic functional group distribution of PDMS coated UiO-66, silicon was confirmed to be evenly coated. The contact angle increased by over 30° for the PDMS coated UiO-66, indicating that the hydrophobicity was improved. In addition, both the UiO-66 and PDMS coated UiO-66 were used as adsorbents for DIMP, a similar chemical warfare agent, to investigate the durability of adsorption capacity in a high humidity environment. The PDMS coated UiO-66 showed higher durability of adsorption capacity for 20 days than that of pristine UiO-66.
  1. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM, Nature, 402, 276 (1999)
  2. Gong X, Gnanasekaran K, Chen Z, Robison L, Wasson MC, Bentz KC, Cohen SM, Farha OK, Gianneschi NC, J. Am. Chem. Soc., 142, 17224 (2020)
  3. Yang S, Nam S, Kim T, Im J, Jung H, Kang J, Wi S, Park B, Park C, J. Am. Chem. Soc., 135, 7394 (2013)
  4. Kim J, Balderas-Xicohténcatl R, Zhang L, Kang S, Hirscher M, Oh H, Moon H, J. Am. Chem. Soc., 139, 15135 (2017)
  5. Chen H, Shen K, Tan Y, Li Y, ACS Nano, 13, 7800 (2019)
  6. Liu Y, Moon S, Hupp JT, Farha OK, ACS Nano, 9, 12358 (2015)
  7. Jang W, Kim H, Jeong S, Appl. Chem. Eng., 32, 524 (2021)
  8. Kim H, Seo J, Kim H, Jeong S, Baek K, Kim J, Min S, Kim S, Jeong K, ACS Appl. Mater. Interfaces, 13, 3782 (2021)
  9. Palomba JM, Harvey SP, Kalaj M, Pimentel BR, DeCoste JB, Peterson GW, Cohen SM, ACS Appl. Mater. Interfaces, 12, 14672 (2020)
  10. Mondloch JE, Katz MJ, Isley WC, Ghosh P, Liao P, Bury W, Wagner GW, Hall MG, DeCoste JB, Peterson GW, Nat. Mater., 14, 512 (2015)
  11. Kye Y, Jeong K, Kim D, Appl. Chem. Eng., 30, 513 (2019)
  12. Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J, ACS Appl. Mater. Interfaces, 7, 223 (2015)
  13. Kalaj M, Momeni MR, Bentz KC, Barcus KS, Palomba JM, Paesani F, Cohen SM, Chem. Commun., 55, 3481 (2019)
  14. Kalaj M, Palomba JM, Bentz KC, Cohen SM, Chem. Commun., 55, 5367 (2019)
  15. Song D, Bae J, Ji H, Kim M, Bae Y, Park K, Moon D, Jeong N, J. Am. Chem. Soc., 141, 7853 (2019)
  16. Tran TQN, Das G, Yoon H, Sens. Actuators B-Chem., 243, 78 (2017)
  17. Kumar P, Vellingiri K, Kim K, Brown RJC, Manos MJ, Microporous Mesoporous Mater., 253, 251 (2017)
  18. Zhang X, Lv X, Shi X, Yang Y, Yang Y, J. Colloid Interface Sci., 539, 152 (2019)
  19. Yang C, Kaipa U, Mather QZ, Wang X, Nesterov V, Venero AF, Omary MA, J. Am. Chem. Soc., 133, 18094 (2011)
  20. Taylor JM, Vaidhyanathan R, Iremonger SS, Shimizu GKH, J. Am. Chem. Soc., 134, 14338 (2012)
  21. Zhang W, Hu Y, Ge J, Jiang HL, Yu SH, J. Am. Chem. Soc., 136, 16978 (2014)
  22. Singh V, Guo T, Xu H, Wu L, Gu J, Wu C, Gref R, Zhang J, Chem. Commun., 53, 9246 (2017)
  23. Tian N, Gao Y, Wu J, Luo S, Dai W, New J. Chem., 43, 15539 (2019)
  24. Kim J, Hwang H, Kang D, Kang H, Polym. Korea, 38, 371 (2014)
  25. Han S, Kim K, Kim J, Uhm S, Kim Y, Appl. Chem. Eng., 28, 1 (2017)
  26. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK, Chem. Commun., 49, 9449 (2013)
  27. Park E, Sim J, Jeong M, Seo H, Kim Y, RSC Adv., 3, 12571 (2013)
  28. Cho Y, Park E, Kim Y, J. Ind. Eng. Chem., 20, 1231 (2014)
  29. Han S, Kim K, Kim J, Uhm S, Kim Y, Appl. Chem. Eng., 28, 1 (2017)
  30. Park E, Kim B, Park D, Han S, Kim D, Yun W, Kim Y, RSC Adv., 5, 40595 (2015)
  31. Kim S, Seo M, Uhm S, Appl. Chem. Eng., 28, 691 (2017)
  32. Lee J, Kim J, Kim H, Bae Y, Lee K, Cho H, J. Micromech. Microeng., 23, 035007 (2013)
  33. Gao X, Cui R, Ji G, Liu Z, Nanoscale, 10, 6205 (2018)
  34. Xu R, Kang Y, Zhang W, Zhang X, Pan B, Angew. Chem.-Int. Edit., 61, e2021154 (2022)
  35. Ding M, Jiang H, CCS Chem., 2, 2740 (2020)