화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.3, 289-295, June, 2022
전 고체 고분자 전지용 Oligo(EDOT)/PVdF 블렌드 전해질
Oligo(EDOT)/PVdF Blend Electrolyte for All Solid Polymer Battery
E-mail:
초록
본 연구에서는 동종의 thiophene계 고분자를 전극과 전해질 재료로 적용하여 고체 전해질과 전극이 맞닿은 계면 저항을 감소시킨 고분자 전지를 제작하였다. 먼저 poly(3,4-ethylenedioxy thiophene) (PEDOT) 기반 전극과의 계면 저항을 최소화하기 위해 3,4-ethylenedioxy thiophene (EDOT) 올리고머[oligo(EDOT)]를 고체 전해질에 도입하고, oligo(EDOT)의 부족한 리튬 염 해리능력을 향상시키기 위해서 poly(vinylidene fluoride) (PVdF)와 블렌딩한 oligo(EDOT)/PVdF 블렌드 기반 고체 전해질을 제작하였다. 그 결과, oligo(EDOT)에 PVdF를 도입함으로써 고체 고분자 전해질의 이온 전도도는 증가하였다. 또 PEDOT 기반 전극과 oligo(EDOT)/PVdF 블렌드 기반 고체 전해질로 이루어진 전 고체 고분자 전지의 전기화학적 특성을 평가한 결과, 동종의 thiophene계 고분자 물질을 전극과 전해질에 도입함으로써 계면 저항이 크게 감소함을 확인하였다.
In this study, we intend to fabricate an all solid polymer battery with a reduced interfacial resistance between the solid electrolyte and the electrode by applying thiophene based polymers as both electrode and electrolyte materials. In order to minimize the interfacial resistance with the poly(3,4-ethylenedioxy thiophene) (PEDOT) based electrode, 3,4-ethylenedioxy thiophene (EDOT) oligomer was introduced into the solid electrolyte. Also, to improve the lithium salt dissociation ability of the EDOT oligomer [oligo(EDOT)] electrolyte, it was blended with poly(vinylidene fluoride) (PVdF). As a result, the ionic conductivity of the solid polymer electrolyte increased by introducing PVdF into the oligo (EDOT). From the result of evaluating the electrochemical properties of an all solid polymer battery, the interfacial resistance significantly decreased by introducing a thiophene based polymer to the electrode and electrolyte.
  1. Kim JM, Oh JM, Kim JY, Lee YG, Kim KM, J. Korean Electrochem. Soc., 22, 87 (2019)
  2. Shin HJ, Kim JT, Lee HH, Jeong HK, Trends Met. Mater. Eng., 33, 38 (2020)
  3. Kim KS, Electrical Electro. Mater., 30, 20 (2017)
  4. Joo DY, KIET industrial economy, 3, 20 (2018)
  5. Lee YJ, KDB Monthly Bulletin, 780, 16 (2020)
  6. Kim JS, Lee DW, Lee JH, Kiwoom Ind. Anal., 4, 3 (2019)
  7. Kang YG, Lee CJ, Polym. Sci. Technol., 14, 396 (2003)
  8. Kim HS, Auto J., 42, 35 (2020)
  9. Tran-Van F, Garreau S, Louarn G, Froyer G, Chevrot C, J. Mater. Chem., 11, 1378 (2001)
  10. Liu W, Zhang XK, Wu F, Xiang Y, A study on PVdF-HFP gel polymer electrolyte for lithium-ion batteries, IOP Conf. Ser.: Mater. Sci. Eng., May 23-25, Guangzhou, China (2017).
  11. Ball P, Fullmann H, Heitz W, Angew. Chem.-Int. Edit., 19, 718 (1980)
  12. Han AR, Shin JS, Park SJ, Kim S, Korean Chem. Eng. Res., 47, 476 (2009)
  13. Lee YJ, Jo YK, Park H, Chun HH, Jo NJ, Mater. Sci. Forum, 544-545, 1049 (2007)
  14. Kim MK, Lee YJ, Jo NJ, Surf. Rev. Lett., 17, 63 (2010)
  15. Gozdz AS, Schmutz CN, Tarascon JM, US Patent, 5,296,318 (1994).
  16. Shin JH, Passerini S, J. Electrochem. Soc., 151, A238 (2004)
  17. Zhang Z, Wan M, Synth. Met., 128, 83 (2002)
  18. Han MG, Cho SK, Oh SG, Im SS, Synth. Met., 126, 53 (2002)
  19. No SK, Choi KH, Kwak JW, Ryu WS, Polym. Sci. Technol., 15, 4 (2004)
  20. Wu C, Guo S, Jia L, Han S, Chi B, Pu J, Jian L, RSC Adv., 3, 13968 (2013)
  21. Hwang H, Electrochemical Analysis, 194-199, Freeacademy, Republic of Korea (2007).
  22. Lee JH, Park CH, Park MS, Kim JH, Membr. J., 29, 30 (2019)