화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.3, 272-278, June, 2022
알팔파 및 무환자나무열매로부터 천연유화제의 추출: CCD-RSM을 이용한 최적화
Extraction of Natural Emulsifier from Medicago sativa L. and Sapindus saponaria L.: Optimization using CCD-RSM
E-mail:
초록
본 연구에서는 알팔파 및 무환자나무열매로부터 천연유화제를 추출하여 CCD-RSM을 이용한 추출수율 및 추출물의 거품안정도에 관한 추출공정을 최적화하였으며, 95% 신뢰구간에서 최적화 결과의 통계학적 합리성을 확인하였다. 독 립변수로는 주정/초순수의 부피비와 추출온도, 반응치로는 추출수율과 추출물의 거품안정도로 설정하였다. 주정/초순 수 부피비 53.5 vol%, 추출온도 70.9 °C인 최적조건 하에서 알팔파 추출공정의 최대 추출수율은 26.2 wt%, 추출물의 최대 거품안정도는 44.5%로 예측되었다. 무환자나무열매 추출공정의 경우, 최적조건인 주정/초순수 부피비 60.4 vol%, 추출온도 72.4 °C에서 최대 추출수율은 31.9 wt%, 추출물의 최대 거품안정도는 47.5%로 예측되었다. 이러한 최적화 결과의 정확성을 확인하기 위해 실제 실험을 수행한 결과, 알팔파 및 무환자나무열매 추출공정에 대한 각각의 평균 오차율은 3.4(± 0.3)% 및 5.0(± 0.04)%로 나타났다.
In this study, natural emulsifiers were extracted from Medicago sativa L. and Sapindus saponaria L. The extraction yield using CCD-RSM and the extraction process of foaming stability of the extracted product were optimized and 95% confidence interval was used to confirm the statistical reasonableness of the optimization. Herein, independent parameters were the ethanol volume and extraction temperature, whereas reaction parameters were the extraction yield and foaming stability. Under the condition of 53.5 vol% ethanol and extraction temperature (70.9 °C), the maximum yield and foaming stability of the extracted product from Medicago sativa L were predicted as 26.2 wt% and 44.5%, respectively. In the case of the extraction from Sapindus saponaria L, the maximum yield and foaming stability were expected to be 31.9 wt% and 47.5% under the optimized conditions including 60.4 vol% of ethanol and extraction temperature (72.4 °C). The average experimental error for validating the accuracy was about 3.4(± 0.3)% and 5.0(± 0.04)% for the extraction processes from Medicago sativa L. and Sapindus saponaria L., respectively.
  1. Ogino K, Abe M, Mixed surfactant systems: Solution properties of anionic-nonionic mixed surfactant systems, Marcel Dekker, Inc., 1-23 (1992).
  2. Gawel E, Grzelak M, J. Herb. Med., 10, 8 (2017)
  3. Bialy Z, Jurzysta M, Oleszek W, Piacente S, Pizza C, Agric J, J. Agric. Food. Chem., 47, 3185 (1999)
  4. Liu XG, Sun YQ, Bain J, Han T, Yue DD, Li DQ, Gao PY, Bioorganic Chem., 83, 468 (2019)
  5. Rodrigues F, Oliveria PD, Neves J, Sarmento B, Amaral MA, Oliveira MB, Ind. Crop. Prod., 49, 634 (2013)
  6. Homayoonfal M, Khodaiyan F, Mousavi M, Food Chem., 174, 649 (2015)
  7. Qader BS, Supeni EE, Ariffin MKA, Talib ARA, Renew. Energy, 136, 48 (2019)
  8. Yu C, Cheng T, Chen J, Ren Z, Zeng M, Int. J. Therm. Sci., 138, 351 (2019)
  9. Garcia A, Rhoden SA, Bernardi-Wenzel J, Orlandelli RC, Azevedo JL, Pamphile JA, J. Appl. Pharm. Sci., 2, 35 (2012)
  10. Wang Z, Hong J, Zhang L, Liu P, Energy Procedia, 105, 2163 (2017)
  11. Pycke JR, Stat. Probabil. Lett., 63, 387 (2003)