화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.111, 98-110, July, 2022
Effect of silane acrylate on the surface properties, adhesive performance, and rheological behavior of acrylic pressure sensitive adhesives for flexible displays
E-mail:
In this study, novel silane acrylates, urethane silane acrylate (USA) and urethane silane linear acrylate (USLA), comprised of urethane and silane groups were designed and synthesized, and their effect on the surface properties, adhesion, and rheological behavior of acrylic PSA was evaluated. The introduction of the synthesized USA and USLA affected the chain arrangement, and at least 3 wt% of the silane acrylates was required to alter the surface properties (roughness and wettability). Compared to a commercial silane acrylate (SA), USA and USLA showed improved cohesion of the acrylic PSA aided by the urethane bond; however, the length of the terminal silane groups produced some variations. USA improved the cohesive properties of acrylic PSA due to its short chain, which further increased the peel strength of the acrylic PSA as compared to USLA (USA: 1363 ± 173 gf/25 mm, USLA: 1258 ± 132 gf//25 mm, based on 1 wt% content). However, at 3 wt% or more, excessive cohesion led to a decrease in the interaction with the substrate, thereby decreasing the peel strength. On the other hand, SA gradually increased the peel strength of the acrylic PSA, but cohesive failure occurred due to the insufficient increase in the cohesion. With respect to the flexibility of the acrylic PSAs, SA slightly improved the modulus of the high-temperature region aided by the silane group, and the recovery properties were increased from 10.8% to a maximum of 31% at 100% strain. In addition, the low cohesive properties resulted in very high stress relaxation properties (>99%). The effects of USA and USLA on flexibility were similar, but the high cohesive force further improved the elastic properties, resulting in better recovery than those imparted by SA (USA: 87 ~ 89.4%, USLA: 56.6 ~ 91.7%). Comparing the two urethane-based silane acrylates, the stress relaxation property of USA was lower than that of USLA, which is related to the cohesive property of the acrylic PSA. In addition, all of the synthesized acrylic PSAs showed excellent optical properties with transmittance >98.1% and haze <2.23%, indicating their potential for application in flexible displays.
  1. Seok WC, Leem JT, Song HJ, Polym. Test, 108, 107491 (2022)
  2. Zhu M, Cao Z, Zhou H, Xie Y, Li G, Wang N, et al., RSC Adv., 10, 10277 (2020)
  3. Lei YF, Wang XL, Liu BW, Ding XM, Chen L, Wang YZ, ACS Sustainable Chem. Eng., 8, 13261 (2020)
  4. Wang Y, Sun S, Li N, Bai Y, Zheng X, J. Appl. Polym. Sci., 135, 46038 (2018)
  5. Kim DH, Yu A, Goh M, J. Ind. Eng. Chem., 96, 76 (2021)
  6. Lee EJ, Song HJ, Polymer, 12, 2859 (2020)
  7. Kim DH, Seok WC, Leem JT, Han YW, Kang JH, Song HJ, Eur. Polym. J., 116, 330 (2019)
  8. Malvey KMAS, Pharma Innov. J., 8, 181 (2019)
  9. Kwon SJ, Seok WC, Leem JT, Kang JH, Koh WG, Song HJ, et al., Polymer, 147, 30 (2018)
  10. Song HJ, Kim DH, Lee EJ, Moon DK, J. Mater. Chem. A, 1, 6010 (2013)
  11. Seok WC, Leem JT, Kang JH, Kim YJ, Lee S, Song HJ, Polymer, 12, 1504 (2020)
  12. Lee SW, Park JW, Kwon YE, Kim S, Kim HJ, Kim EA, et al., Int. J. Adhes. Adhes., 38, 5 (2012)
  13. Back JH, Baek D, Sim KB, Oh GY, Jang SW, Kim HJ, et al., Ind. Eng. Chem. Res., 58, 4331 (2019)
  14. Lee JH, Shim GS, Park JW, Kim HJ, Kim Y, J. Ind. Eng. Chem., 78, 461 (2019)
  15. Lee JH, Lee TH, Shim KS, Park JW, Kim HJ, Kim Y, et al., Int. J. Adhes. Adhes., 74, 137 (2017)
  16. Lee JH, Shim GS, Kim HJ, Kim Y, Polymer, 11, 1959 (2019)
  17. Ghazali SK, Adrus N, Majid RA, Ali F, Jamaluddin J, Polymer, 13, 487 (2021)
  18. Tan MWM, Thangavel G, Lee PS, Adv. Funct. Mater., 31, 2103097 (2021)
  19. Du R, Xu Z, Zhu C, Jiang Y, Yan H, Wu HC, et al., Adv. Funct. Mater., 30, 1907139 (2020)
  20. Cai C, Wei Z, Huang Y, Wang P, Song J, Deng L, et al., Compos. Sci. Technol., 201, 108524 (2021)
  21. Zhao X, Dong R, Guo B, Ma PX, ACS Appl. Mater. Interfaces, 9, 29595 (2017)
  22. Lin Y, He D, Chen Z, Wang L, Li G, RSC Adv., 6, 12479 (2016)
  23. Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, et al., J. Mater. Chem. C, 6, 2258 (2018)
  24. Yang Z, Li H, Zhang L, Lai X, Zeng X, J. Colloid Interface Sci., 570, 1 (2020)
  25. Yu Y, Liao B, Li G, Jiang S, Sun F, Ind. Eng. Chem. Res., 53, 564 (2014)
  26. Rahimi AR, Murphy M, Upadhyay V, Faiyaz K, Battocchi D, Webster DC, J. Coat. Technol. Res., 18, 83 (2021)
  27. Fan W, Jin Y, Shi L, Polym. Chem., 11(34), 5463 (2020)
  28. Rahimi AR, Stafslien SJ, Vanderwal L, Finlay JA, Clare AS, Webster DC, Prog. Org. Coat., 149, 105931 (2020)
  29. Ha YM, Kim YO, Ahn S, Lee SK, Lee JS, Park M, et al., Eur. Polym. J., 118, 36 (2019)
  30. Liu J, Jiao X, Cheng F, Fan Y, Wu Y, Yang X, Prog. Org. Coat., 144, 105673 (2020)
  31. Jiao X, Liu J, Jin J, Cheng F, Fan Y, Zhang L, et al., ACS Omega, 6, 2890 (2021)
  32. Li Y, Zhang L, Li C, J. Colloid Interface Sci., 559, 273 (2020)
  33. Kang DJ, Park GU, Im HG, Park HY, Jin J, Polymer, 105, 19 (2016)
  34. Shan S, Lin Y, Zhang A, Polymer, 221, 123588 (2021)
  35. Zhao PC, Li W, Huang W, Li CH, Molecules, 25, 597 (2020)
  36. Zhao L, Yin Y, Jiang B, Guo Z, Qu C, Huang Y, J. Colloid Interface Sci., 573, 105 (2020)
  37. Zhang K, Shi X, Chen J, Xiong T, Jiang B, Huang Y, Chem. Eng. J., 412, 128734 (2021)
  38. Fei G, Geng H, Wang H, Liu X, Liao Y, Shao Y, et al., Polymer, 11(12), 1922 (2019)
  39. Lee SW, Back JH, Shim GS, Jang SW, Kim HJ, Int. J. Adhes. Adhes., 98, 102503 (2020)
  40. Zhang K, Chen M, Drummey KJ, Talley SJ, Anderson LJ, Moore RB, et al., Polym. Chem., 7, 6671 (2016)
  41. Liu X, Zhang Q, Gao Z, Hou R, ACS Appl. Mater. Interfaces, 9, 17645 (2017)
  42. Peng X, Liu Y, Xin B, Guo H, Yu Y, J. Coat. Technol. Res., 17, 1377 (2020)
  43. Lei L, Zhang Y, Ou C, Xia Z, Zhong L, Prog. Org. Coat., 92, 85 (2016)
  44. Pinnau I, Morisato A, He Z, Macromolecules, 37, 2823 (2004)
  45. Kim PS, Lee SW, Park JW, Park CH, Kim HJ, J. Adhes. Sci. Technol., 28, 15 (2014)
  46. Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA, ACS Macro Lett., 9, 1638 (2020)
  47. Yamada B, Zetterlund PB, Sato E, Prog. Polym. Sci, 31, 835 (2006)
  48. Li Q, Guo L, Qiu T, Xiao W, Du D, Li X, Appl. Surf. Sci., 377, 66 (2016)
  49. Wang X, Zhang Q, Minerals, 10, 114 (2020)
  50. Baek SS, Hwang SH, Eur. Polym. J., 92, 97 (2017)
  51. Baek SS, Hwang SH, Int. J. Adhes. Adhes., 70, 110 (2016)
  52. Zhang X, Ding Y, Zhang G, Li L, Yan Y, Int. J. Adhes. Adhes., 31, 760 (2011)
  53. Villani M, Deshmukh YS, Camlibel C, Esteves ACC, De With G, RSC Adv., 6, 245 (2016)
  54. Wang M, Chen D, Feng W, Zhong A, Mater. Trans., 56, 895 (2015)
  55. Leem JT, Seok WC, Yoo JB, Lee S, Song HJ, Polymer, 13, 1564 (2021)