화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.12, 3369-3376, December, 2022
Destruction of oxytetracycline using a microwave-assisted fused TiO2 photocatalytic oxidation system
E-mail:
We developed a novel and efficient degradation process for oxytetracycline (OTC), an antibiotic that remains in the aquatic environment and affects humans and animals. OTC was decomposed by applying a fusion TiO2 photocatalytic oxidation process adding microwaves, and various unit technologies and their fusion effects were investigated. As the microwave power increased, the decomposition efficiency increased, and the highest decomposition rate was shown in the neutral pH reaction solution. The decomposition rate was greatly increased by the addition of hydrogen peroxide, and it showed a synergistic effect that the decomposition efficiency was doubled by fusion with other processes. Eleven intermediate products of OCT decomposition were detected by liquid chromatography0mass spectrometry; CO2, H2O, NH4 +, and NO3 by active oxidizing species, such as OH radicals generated by the microwave-assisted fused TiO2 photocatalytic oxidation process were mineralized.
  1. Vaz S, Chem. Biol. Technol. Agric., 3, 6 (2016)
  2. Liu Q, Yu H, Zeng F, Li X, Sun J, Hu X, Pan Q, Li C, Lin H, Su ZM, J. Colloid Interface Sci., 579, 119 (2020)
  3. Ren X, Wang Z, Gao B, Liu P, Li J, Chemosphere, 173, 563 (2017)
  4. Elena MC, Carmen GB, Sigrid S, Oliver G, Environ. Pollut., 148, 570 (2007)
  5. Rok J, Wrzésniok D, Beberok A, Otręba M, Delijewski M, Buszman E, Toxicol. Vitro, 48, 26 (2018)
  6. Almeida AR, Domingues I, Henriques I, Environ. Pollut., 272, 116371 (2021)
  7. Yan W, Guo Y, Xiao Y, Wang S, Ding R, Jiang J, Gang H, Wang H, Yang J, Zhao F, Water Res., 142, 105 (2018)
  8. Zhang Y, Geißen SU, Gal C, Chemosphere, 73, 1151 (2008)
  9. Wu S, Hu H, Lin Y, Zhang J, Hu YH, Chem. Eng. J., 382, 122842 (2020)
  10. Lee H, Park SH, Park YK, Kim SJ, Seo SG, Ki SJ, Jung SC, Chem. Eng. J., 278, 259 (2015)
  11. Lee H, Park YK, Kim SJ, Kim BH, Yoon HS, Jung SC, J. Ind. Eng. Chem., 35, 205 (2016)
  12. Ki SJ, Jeon KJ, Park YK, Jeong S, Lee H, Jung SC, Catal. Today, 293, 15 (2017)
  13. Park SH, Kim SJ, Seo SG, Jung SC, Nanoscale Res. Lett., 5, 1627 (2010)
  14. Jung SC, Water Sci. Technol., 63, 1491 (2011)
  15. Jeong S, Lee H, Park H, Jeon KJ, Park YK, Jung SC, Catal. Today, 307, 65 (2018)
  16. Lee DJ, Park YK, Kim SJ, Lee H, Jung SC, Korean J. Chem. Eng., 32, 1188 (2015)
  17. Gross U, Ubelis A, Spietz P, Burrows J, J. Phys. D-Appl. Phys., 33, 1588 (2000)
  18. Behar-cohen F, Baillet G, Krutmann J, Pena-garcia P, Clin. Ophthalmol., 8, 87 (2013)
  19. Jung SC, Korean J. Chem. Eng., 25, 364 (2008)
  20. Kim SJ, Kim SC, Seo SG, Lee DJ, Lee H, Park SH, Jung SC, Catal. Today, 164, 384 (2011)
  21. Bennemla M, Chabani M, Amrane A, Int. J. Chem. Kinet., 48, 464 (2016)
  22. Kong W, Li C, Dolhi JM, Li S, He J, Qiao M, Chemosphere, 87, 542 (2012)
  23. Li R, Jia Y, Wu J, Zhen Q, RSC Adv., 5, 40764 (2015)
  24. Jung SC, Lee H, Ki SJ, Kim SJ, Park YK, Catal. Today, 348, 270 (2020)
  25. Zouanti M, Bezzina M, Dhib R, Environ. Eng. Res., 25, 316 (2020)
  26. Zhang S, Zhao S, Huang S, Hu B, Wang M, Zhang Z, He L, Du M, Chem. Eng. J., 420, 130516 (2021)
  27. Niu J, Ding S, Zhang L, Zhao J, Feng C, Chemosphere, 93, 1 (2013)
  28. Liu Y, He X, Fu Y, Dionysiou DD, J. Hazard. Mater., 305, 229 (2016)
  29. Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR, Sol. Energy, 85, 2732 (2011)