화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.32, No.5, 264-269, May, 2022
Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화
Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment
E-mail:
Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200℃. Heating the material to higher temperatures, up to 400℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/ Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.
  1. Tan J, Li S, Liu B, Cheng HM, Small Struct., 2, 2000093 (2021)
  2. Wang Y, Niu B, Zhang X, Lei Y, Zhong P, Ma X, ECS J. Solid State Sci. Technol., 10, 047002 (2021)
  3. Iqbal A, Hong J, Ko TY, Koo CM, Nano Converg., 8, 9 (2021)
  4. Rasel MAJ, Wyatt B, Wetherington M, Anasori B, Haque A, J. Mater. Res., 36, 3398 (2021)
  5. Aakyiir M, Oh JA, Araby S, Zheng Q, Naeem M, Ma J, Adu P, Zhang L, Mai YW, Compos. Sci. Technol., 214, 108997 (2021)
  6. Hart JL, Hantanasirisakul K, Lang AC, Anasori B, Pinto D, Pivak Y, Omme JTV, May SJ, Gogotsi Y, Taheri ML, Nat. Commun., 10, 522 (2019)
  7. Wozniak J, Petrus M, Cygan T, Lachowski A, Kostecki M, Jastrzębska A, Wojciechowska A, Wojciechowski T, Olszyna A, Materials, 14, 6011 (2021)
  8. Wyatt GC, Nemani SK, Desai K, J. Phys. Condens. Matter, 33, 224002 (2021)
  9. Xia F, Lao J, Yu R, Sang X, Luo J, Li Y, Wu J, Nanoscale, 11, 23330 (2019)
  10. Shan D, He J, Deng L, Yan S, Luo H, Huang S, Xu Y, Results Phys., 15, 102750 (2019)
  11. Fan G, Li X, Xu C, Jiang W, Zhang Y, Gao D, Bi J, Wang Y, Nanomaterials, 8, 141 (2018)
  12. Zhu J, Tang Y, Yang C, Wang F, Cao M, J. Electrochem. Soc., 163, A785 (2016)
  13. Low J, Zhang L, Tong T, Shen B, Yu J, J. Catal., 361, 255 (2018)
  14. Zhang F, Zhou Y, Zhang Y, Li D, Huang Z, Nanophotonics, 9, 2025 (2020)
  15. Liu S, Wang M, Liu G, Wan N, Ge C, Hussain S, Meng H, Wang M, Qiao G, Appl. Surf. Sci., 567, 150747 (2021)